
OPTIONAL FORM NO. tO

5010.-104

UNITED STATES GOVERNMENT

Memorandum

TO : All 7040/7094 DCS Users DATE(1April 1, 1966 i

FROM : Computation & Analysis Branch

SUBJECT:_?Ames FORTRAN IV Subroutine Library Manual

I. A new subroutine AL PENR is available for line-plottlng. It

permits the EAI Dataplotters to be run at full speed. A 3:2 reduction

in plotter time has been realized with the use of this subroutine. Write-

ups are available from the Computation & Analysis Branch secretary.

2. CAB program numbers, for use with 7040/7094 DCS decks, will be

assigned by the branch secretary, in Room 103. Instructions for filling

out the white application form are in section 8.3.1 of the Ames 7040/7094

User's Manual.

3. It is anticipated that the 7040/7094 DCS will be replcaed in

Fiscal Year 1968. At that time it will no longer be possible to run

FORTRAN II jobs. There remain a number of programs, some quite large,

that have not been converted to FORTRAN IV. Users of FORTRAN II programs

are urged to convert them to FORTRAN IV as soon as possible. The Comput-

ation & Analysis Branch staff is prepared to assist, particularly where

FAP - MAP conversion is required.

4. The FORTRAN IV Library Tape now includes some 22 heavily used

routines which were available, formerly, by requesting binary decks. The

subroutines in the FORTRAN IV Library are available at load-time, and it

is not necessary to request binary decks.

N67-82r 34
-- (THRU}

-- (ACCESSl UM R) __
T r, _ r (GO Di)

< _ _#_ -- tCA'Ir F-GO RY)

, i

i

TABLE I

SHARE CATALOG CLASSIFICATIONS

Programs shall be assigned a 2-character classification code. The

leftmost character is a letter indicating a primary class; the second

character is a digit indicating a secondary class within the primary.

The classifications shall be as follows:

A. Arithmetic Routines

i. Real Numbers May include multiple precision,

fixed and floating-point operations

2. Complex Number May include multiple precision,

fixed and floating-point operations

3 • Decimal BCD single or multiple precision

arithmetic operations

B. Elementary Functions

i. Trigonometric Also pertains to inverse trigo-

nometric functions

2. Hyperbolic

3. Exponential and

Logarithmic

4. Roots and Powers Refers to roots of quantities, not

polynomials

C. Polynomials and Special Functions

I. Evaluation of Polynomials

2. Roots of Polynomials

3. Evaluation of Special Functions

4. Simultaneous Non-linear Algebraic Equations

5. Simultaneous Transcendental Equations

D. Operations on Functions and Solutions of Differential Equations

I. Numerical Integration

2. Numerical Solutions of Ordinary Differential Equations

3. Numerical Solutions of Partial Differential Equations

4. Numerical Differentiation

E. Interpolation and Approximations

i. Table Look-up and Interpolation

2. Curve Fitting

3. Smoothing

F. Operations on Matrices_ Vectors and Simultaneous Linear Equations

I. Matrix Operations

2. Eigenvalues and Eigenvectors

3. Determinants

4. Simultaneous Linear Equations

G. Statistical Analysis and Probability

I. Data Reduction Refers to the calculation of the

more common statistical parameters

such as mean, median, standard

deviation, etc.

2. Correlation and

Regression Analysis

Includes curve fitting which is

explicitly for statistical purposes

3. Sequential Analysis

4. Analysis Of Variance

H. Operations Research_ Linear Programming, Simulation_ Scientific

Mana_ement_ Gaming and Game-Like Models

I. Linear Programming

2. General and Job-Shop Simulators

3. Games and Game-like Models

4. Game Theory

5. General Problem Solvers

6. Schedulers and Scientific Management

I. Input

Io Binary Pertains to program input or data

input in the binary mode (via card,

tape, drum or disk)

2. Octal Pertains to program input or data

input in actual mode (cards)

, Decimal Pertains to program input and data

input in the decimal mode (via card

or tape)

f_ B

4

I. Input (continued_

4. BCD (Hollerith) Pertains to program input or data

input in the BCD or Hollerith

mode (via card, tape, drum or disk)

5. (formerly composite) Reserved. Please do not use.

9. Composite A combination of any of the above,

which is not primarily one of the

above, such as a general purpose

input program

J. Output

I. Binary Pertains to program output (card

or tape) or data output (card, tape,

drum or disk) in the binary mode

2. Octal Pertains to program output (printer)

or data output (card or printer) in
the octal mode

3. Decimal Pertains to program output (card,

tape or printer) or data output

(card, tape or printer) in the

decimal mode

4. BCD (Hollerith) Pertains to program output (card,

tape, printer, drum or disk) or data

output (card, tape, printer, drum

or disk) in the BCD mode

5. Plotting Refers to routines for producing

plotted output, either via printer

or via CRT, or other special plotting

device. Routines for using plotting

devices to simulate printing are also

included

6. (formerly Plotting) Reserved, Please do not use

9. Composite A combination of any of the above,

which is not primarily one of the

above, such as a general purpose out-

put program

K. Internal Information Transfer

Generally denotes core-to-core, tape-

to-tape, drum-to-drum and core-to-

tape and core-to-drum movements

4 •

K. Internal Information Transfer (continued)

I. Drum Any drum read/write, editing,

duplicating or comparing, etc.

program

2. Relocation Pertains to core-to-core or drm

to-drum relocation only, not input

with relocation

3. Disk Pertains to disk-to-disk, core-to-

disk, disk-to-core, tape-to-disk

and disk-to-tape relocation

4. Tape Any tape read/write, editing,

duplicating or comparing, etc.

program

5. Direct Data Devices Computer-to-computer information

transfer, other than via the above

categories

L. Executive Routines

I. Assembly

2. Compiling

3. Monitoring

4. Preprocessing

5. Disassembly and De-Relativizing

6. Relativizing

7. Computer Language to Computer Language Translators

This refers to translation from one

artificial language designed for comput-

ing and data processing porposes to

another such language, e.g. FORTRAN

to COBOL. Not to be used for trans-

lation of natural languages such as

English or Russian.

M. Data Handling

i. Sorting

o Conversion and/or

Scaling

Pertains to any conversion and scal-

ing routine (packed or unpacked,

single or multiple precision) such

as card image to BCD, BCD to card

image, binary to BCD, BCD to binary,

fixed to floating, etc. The primary

function of programs in this category

must be conversion or scaling, not

input-output.

M. Data Handling {continued)

3. Merging

4. Character Manipulation

N. Debu_ing

i. Tracing: Trapping

2. Dumping

Oo

3. Memory Verification

and Searching

4. Breakpoint Printing

Core tape, drum, disk, console

printouts (on-or off-line)

. Reserved. Please do not use.

3. Computers Pertains to programs which simulate

or interpret other computers on

the 704, 709, 7090 or successors

4. Pseudo-computers Simulation of theoretical or

pseudo-computers

9. Other or composite

P. Diagnostics Pertains to any program which

checks for malfunctioning of the

computer or its components

Q. Service or Housekeeping; Programming Aids

Pertains to any routine of a

utilitarian nature which performs

a service for the programmer such

as executing the equivalent of

pushing a button on the console,

setting a dial or accumulating
a check sum.

I. Clear/Reset Programs

2. Check Sum Accumulation and Correction

Simulation of Computers and Data Processorsl Interpreters

i. Off-line Equipment Any program which simulates off-

line equipment

Q. service or Housekeeping; Programming Aids (continued_

3. Rewind, Tape Mark, Load Cards, Load

Tape, etc. Programs

4. Internal Housekeeping: Save, Restore, etc.

5. Report Generator Subroutines

R. Logical and Symbolic Logical functions, logical operations,

logical calculuses and algebras,

symbol manipul_tion and manipulation

of non-numeric quantities.

I. Formal Logic

2. Symbol Manipulation

S. Information Retrieval

T. Applications and Application-Oriented Programs

I. Physics (including nuclear)

2. Chemistry

3. Other Physical Sciences (Geology, Astronomy, etc.)

4. Engineering

5. Business Data Processing

6. Manufacturing, (non-data) Processing, and Process Control

7. Mathematics and Applied Mathematics

U. Linguistics and Languages

V. General Purpose Utility Subroutines

I. Random number Generators

2. Combinatorial Generators Permutations, Combinations,

and Subsets

Z. All Others This category contains all routines

for which no primary class has yet

been designated. Routines which

are covered by a primary class but

which are not adequately described

by a sub-class are assigned the

applicable primary classification

with a sub-class designation of

zero.

The SHARE classifications shall be reviewed from time to time by a

committee appointed from the SHARE Membership. It is anticipated

that new program developments will show the need for additional

classifications. Any program for which no suitable secondary class
exists maybe assigned the secondary code 0 (zero). The co_nittee
may assign additional secondary classes as required to distribute
the accumulation of "0" classed programs into applicable classes.

Similarly, where no suitable primary class exists, a program maybe
classed "Z". The committee mayestablish additional primary classes
as required.

The establishment of new classification codes is reserved for the
committee. Suggestions for additional classifications maybe submitted
to the committee by the membership.

F

KW DEC.31, 1965 CAPR - KEYWORD PERMUTED INDEX

*ACOS*AMES*LIBRARY*INVERSE COSINE OR*ARCCOSINE
*AITKEN METHOD*AMES*LIBRARY*TABLE LOOK-UP AND*INTERPOLATION BY
*ALOG*AMES*LIBRARY*NATURAL*LOGARITHM OF A NUMBER
*ALOGIO*AMES*LIBRARY*COMMON*LOGARITHM OF A NUMBER
*AMES*LIBRARY COMPUTE*SCALE FACTORS FOR*PLOTS
*AMES*LIBRARY DUMMY*PLOT PROGRAM
*AMESmLIBRARY DUMMytPLOT PROGRAM
*AMES*LIBRARY EVALUATION OF A-POLYNOMIAL
*AMES*LIBRARY PRINT*SCALES ON*PLOTS GENERATED BY*EAI PLOTTER
*AMES*LIBRARY SELECTIVE*DUMP PROGRAM*PDUMP
*AMES*LIBRARY UTILITY PROGRAM
*AMES*LIBRARY UTILITY PROGRAM FOR*ERROR MESSAGES
*AMES*LIBRARY UTILITY PROGRAM FOR POSITIONING*TAPES*LOCATE
*AMES*LIBRARY UTILITY PROGRAM FOR*TITLE AND*DATE ON OUTPUT*PAGE
*AMES*LIBRARY UTILITY PROGRAM TO*REWIND AND UNLOAD NAG*TAPE
*AMES*LIBRARY*ARDC MODEL*ATMOSPHERE OF 1959
*AMES*LIBRARY*BOOLEAN OPERATION*AND OR*INTERSECTION
*AMES*LIBRARY*BOOLEAN OPERATION*COMPLEMENT OR*NOT
*AMES*LIBRARY*BOOLEAN OPERATION*OR OR*UNION
*AMES*LIBRARY*CLOCK ACCESS PROGRAM*CLOCK
*AMES*LIBRARY*COMMON*LOGARITHM OF A NUMBER*ALOGIO
*AMES*LIBRARY*COSINE OF AN ANGLE
*AMES*LIBRARY*DATA CONVERSION BY ARBITRARY*FORMAT USE
*AMES*LIBRARY*DEFINE FULL LOGICAL WORD*BOOLEAN VARIABLE
*AMES*LIBRARY*DUMP COUNTING ROUTINE*COUNT
*AMES*LIBRARY*DUMP ROUTINE
*AMES*LIBRARY*DYNAMIC*DUMP PROGRAM*DDUMP
*AMES*LIBRARY*EXPONENTIAL FUNCTION
*AMES*LIBRARY*FLOATING POINT*OVERFLOW/UNDERFLOW PROGRAM
*AMES*LIBRARY*HYPERBOLIC COSINE*COSH FUNCTION
*AMES*LIBRARY*HYPERBOLIC SINE*SINH FUNCTION
*AMES*LIBRARY*HYPERBOLIC TANGENT*TANH FUNCTION
*AMES*LIBRARY*INVERSE COSINE OR*ARCCOSINE*ACOS
*AMES*LIbRARY*INVERSE TANGENT OR*ARCTANGENT*ARTN
*AMES*LIBRARY*INVERSE SINE OR*ARCSINE*ASIN
*AMES*LIBRARY*INVERSE TANGENT DR*ARCTANGENT*ATAN
*AMES*LIBRARY*INVERSE TANGENT OR*ARCTANGENT*ATAN2
*AMES*LIBRARYiLEAST SQUARES*POLYNOMIAL*CURVE FITTING
*AMES*LIBRARY*LINEAR*SIMULTANEOUS EQUATIONS BY*CROUT METHOD
*AMES*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS EQN SOLUTION

PAG

AL
AL
IBM
IBM
AL
AL
AL
AL
AL
IBM
AL
AL
AL
AL
AL
AL
IBM
IBM
IBM
AL
IBM
IBM
AL
IBM
AL
IBM
AL
IBM
AL
AL
AL
IBM
AL
AL
AL
IBM
IBM
AL
AL
AL

l. O0

ACOS
TAIN
ALOG
ALGI
SCAL
PLOT
PSCA
POLY
SFAC
PDMP
EDFL
EROR
LOCA
PAGE
REWN
ARDC
AND
CMPL
OR
CLOK
ALGI
COS
CVRT
BOOL
COUN
DUMP
DDMP
EXP
FPT
COSH
SINH
TANH
ACOS
ARTN
ASIN
ATAN
ATN2
LSQP
CROT
MTNV

KW DEC.31, 1965 CAPR - KEYWORD PERMUTED INDEX PAGE 2,00

*AMES*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS EQUATIONS SOLUT
*AMES*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS LINEAR EQUATION
*AMES*LIBRARY*NATURAL*LOGARITHM OF A NUMBER*ALOG
*AMES*LIBRARY*NUMERICAL SOLUTION OF*DIFFERENTIAL EQUATIONS
*AMES*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS
*AMES*LIBRARY*NUMERICAL INTEGRATION OF A FUNCTION*GAUSS QUAD.
*AMES*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS
*AMES*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS
*AMES*LIBRARY*NUMERICAL*INTEGRATION BY*SIMPSONS RULE
*AMES*LIBRARY*PARITY OF AN INTEGER*XPAR
*AMES*LIBRARY*PLOT*LABELS
*AMES*LIBRARY*PLOT*LABELS
*AMES*LIBRARY*PLOTWS PREPARES TAPE FOR*PLOTS ON*EAI XY PLOTTER
*AMES*LIBRARY*POST MORTEM*DUMP ROUTINE*CRASH
*AMES*LIBRARY*RANDOM NUMBER GENERATOR
*AMES*LIBRARY*RANDOM NUMBER GENERATOR
*AMES*LIBRARY*RANDOM NUMBER GENERATOR
*AMES*LIBRARY*READ*BINARY*TAPE
*AMES*LIBRARY*REWIND*BACKSPACE*END-OF-FILE MARK ON*MAGNETIC TAP
*AMES*LIBRARY*ROOT OF FUNCTION BY*INTERVAL HALVING METHOD
mAMES*LIBRARY*ROOT OF FUNCTION BY*INTERVAL HALVING METHOD
*AMES*LIBRARY*ROOT OF AN ARBITRARY FUNCTION*NEWTON-RAPHSON
*AMES*LIBRARY*ROOTS OF A-POLYNOMIAL*DOUBLE PRECISSION*REAL COEF
*AMES*LIBRARY*ROOTS OF A-POLYNOMIAL
*AMES*LIBRARY*ROOTS OF*POLYNOMIALS WITH REAL COEFFICIENTS
*AMES*LIBRARY*SIMULTANEOUS*LINEAR EQUATIONS
*AMES*LIBRARY*SINE OF AN ANGLE
*AMES*LIBRARY*SMOOTH ANDmDIFFERENTIATE SET OF DATA POINTS
*AMES*LIBRARY*SQUARE ROOT FUNCTION
*AMES*LIBRARY*TABLE LOOK-UP AND*INTERPOLATION BY*AITKEN METHOD
*AMES*LIBRARY*TANGENT FUNCTION
*AND OR*INTERSECTION*AMES*LIBRARY*BOOLEAN OPERATION
*ARCCOSINE*ACOS*AMES*LIBRARY*INVERSE COSINE OR
*ARCSINE*ASIN*AMES*LIBRARY*INVERSE SINE OR
*ARCTANGENT*ARTN*AMES*LIBRARY*INVERSE TANGENT OR
*ARCTANGENT*ATAN*AMES*LIBRARY*INVERSE TANGENT OR
*ARCTANGENT*ATAN2*AMES*LIBRARY*INVERSE TANGENT OR
*ARDC MODEL*ATMOSPHERE OF 1959*AMES*LIBRARY
*ARTN*AMES*LIBRARY*INVERSE TANGENT OR*ARCTANGENT
*ASIN*AMES*LIBRARY*INVERSE SINE OR*ARCSINE

AL
AL
IBM
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
ML
AL
IBM
AL
IBM
AL
AL
IBM
AL
AL
AL
IBM
IBM
AL
AL
AL

INVT
MINV
ALOG
ADAM
COWL
GAUS
INT
DE6F
SIMP
XPAR
ALPP
PALP
PLTW
CRSH
BARN
RNDM
RDM
BNIN
NDID
ITR2
ITRA
ROOT
DPMU
ROP
HPRS
LSQS
SIN
DIF3
SQRT
TAIN
TAN
AND
ACOS
ASIN
ARTN
ATAN
ATN2
AROC
ARTN
ASIN

KW DEC.31, 1965 CAPR- KEYWOROPERMUTEDINDEX PAGE 3.00

*ATAN*AMES*LIBRARY*INVERSETANGENTOR*ARCTANGENT
*ATAN2*AMES*LIBRARYiINVERSETANGENTOR*ARCTANGENT
*ATMOSPHEREOF 1959*AMES*LIBRARY*AROCMOOEL
*BACKSPACE*ENO-OF-FILEMARKON*MAGNETICTAP *AMES*LIBRARY*REWIN
*BINARY*TAPE*AMES*LIBRARY*REAO
*BOOLEANOPERATION*ANOOR*INTERSECTION*AMES*LIBRARY
*BOOLEANOPERATION*COMPLEMENTOR*NOT*AMES*LIBRARY
*BOOLEANOPERATION*OROR*UNION*AMES*LIBRARY
*BOOLEANVARIABLE*AMES*LIBRARY*DEFINEFULL LOGICALWORD
*CLOCKACCESSPROGRAM*CLOCK*AMES*LIBRARY
*CLOCK*AMES*LIBRARY*CLOCKACCESSPROGRAM
*COMMON*LOGARITHMOF A NUMBER*ALOGIO*AMES*LIBRARY
*COMPLEMENTOR*NOT*AMES*LIBRARY*BOOLEANOPERATION
*COSHFUNCTION*AMES*LIBRARY*HYPERBOLICCOSINE
*COSINEOF AN ANGLE*AMES*LIBRARY
*COUNT*AMES*LIBRARY*DUMPCOUNTINGROUTINE
*CRASH-AMES*LIBRARY*POSTMORT_M*OUMPROUTINE
*CROUTMETHOD*AMES*LIBRARY*LINEAR*SIMULTANEOUSEQUATIONSBY
*CURVEFITTING*AMES*LIBRARY*LEASTSOUARES*POLYNOMIAL
*OATACOI_VERSIONBY ARBITRARY*FORMATUSE*AMES*LIBRARY
*DATEONOUTPUT*PAGE*AMES*LIBRARYUTILITY PROGRAMFOR.TITLE AN
*DDUMP*AMES*LIBRARY*OYNAMIC*DUMPPROGRAM
*DEFINE FULL LOGICALWORO*BOOLEANVARIABLE*AMES*LIBRARY
*DIFFERENTIAL EQUATIONS*AMES*LIBRARY*NUMERICAL SOLUTION OF
*DIFFERENTIAL EQUATIONS*AMES*LIBRARY*NUMERICAL INTEGRATION OF
*DIFFERENTIAL EQUATIONS*AMES*LIBRARY*NUMERICAL INTEGRATION OF
*DIFFERENTIAL EQUATIONS*AMES*LIBRARY"NUMERICAL INTEGRATION OF
*DIFFERENTIATE SET OF DATA POINTS*AMES*LIBRARY*SMOOTH AND
*DOUBLE PRECISSION*REAL COEF *AMES*LIBRARY*ROOTS OF A*POLYNOMIA
*DUMP COUNTING ROUTINE*COUNT*AMES*LIBRARY
*DUMP PROGRAM*DDUMP*AMES*LIBRARY*DYNAMIC
*DUMP PROGRAM*PDUMP*AMES*LIBRARY SELECTIVE
*DUMP ROUTINE*AMES*LIBRARY
*OUMP ROUTINE*CRASH*AMES*LIBRARY*POST MORTEM
*DYNAMIC*DUMP PROGRAM*DDUMP*AMES*LIBRARY
*EAI PLOTTER*AMES*LIBRARY PRINT*SCALES ON*PLOTS GENERATEO BY
*EAI XY PLOTTER*AMES*LIBRARY*PLOTWS PREPARES TAPE FOR*PLOTS ON
*ENO-OF-FILE MARK ON*MAGNETIC TAP *AMES*LIBRARY*REWIND*BACKSPAC
*ERROR MESSAGES*AMES*LIBRARY UTILITY PROGRAM FOR
*EXPONENTIAL FUNCTION*AMES*LIBRARY

IBM
IBM
AL
AL
AL
IBM
IBM
IBM
IBM
AL
AL
IBM
IBM
AL
IBM
AL
AL
AL
AL
AL
AL
AL
IBM
AL
AL
AL
AL
AL
AL
AL
AL
IBM
IBM
AL
AL
AL
AL
AL
AL
IBM

ATAN
ATN2
ARDC
NOID
BNIN
AND
CMPL
OR
BOOL
CLOK
CLOK
ALGI
CMPL
COSH
COS
COUN
CRSH
CROT
LSQP
CVRT
PAGE
DDMP
BOOL
ADAM
COWL
DE6F
INT
DIF3
DPMU
COUN
ODMP
POMP
OUMP
CRSH
OOMP
SFAC
PLTW
NDID
EROR
EXP

W DEC.31, 1965 CAPR - KEYWORO PERMUTED INDEX

*FLOATING POINT*OVERFLOW/UNOERFLOW PROGRAM*AMES*LIBRARY
*FORMAT USE*AMES*LIBRARY*DATA CONVERSION BY ARBITRARY
*GAUSS QUAD.*AMES*LIBRARY*NUMERICAL INTEGRATION OF A FUNCTION
*HYPERBOLIC COSINE*COSH FUNCTION*AMES*LIBRARY
*HYPERBOLIC SINE*SINH FUNCTION*AMES*LIBRARY
*HYPERBOLIC TANGENT*TANH FUNCTION*AMES*LIBRARY
*INTEGRATION BY*SIMPSONS RULE*AMES*LIBRARY*NUMERICAL
*INTERPOLATION BYiAITKEN METHOO*AMES*LIBRARY*TABLE LOOK-UP AND
*INTERSECTION*AMES*LIBRARY*BOOLEAN OPERATION*AND OR
*INTERVAL HALVING METHOD*AMES*LIBRARY*ROOT OF FUNCTION BY
*INTERVAL HALVING METHOD*AMES*LIBRARY*ROOT OF FUNCTION BY
*INVERSE COSINE OR*ARCCOSINE*ACOS*AMES*LIBRARY
*INVERSE SINE OR*ARCSINE*ASIN*AMES*LIBRARY
*INVERSE TANGENT OR*ARCTANGENT*ARTN*AMES*LIBRARY
*INVERSE TANGENT OR*ARCTANGENT*ATAN*AMES*LIBRARY
*INVERSE TANGENT OR*ARCTANGENT*ATAN2*AMES*LIBRARY
*LABELS*AMES*LIBRARY*PLOT
*LABELS*AMES*LIBRARY*PLOT
*LEAST SQUARES*POLYNOMIAL*CURVE FITTING*AMES*LIBRARY
*LIBRARY COMPUTE*SCALE FACTORS FOR*PLOTS*AMES
*LIBRARY DUMMY*PLOT PROGRAM*AMES
*LIBRARY DUMMY*PLOT PROGRAM*AMES
*LIBRARY EVALUATION OF A'POLYNOMIAL*AMES
*LIBRARY PRINT*SCALES ON*PLOTS GENERATED BY*EAI PLOTTER*AMES
*LIBRARY SELECTIVE*DUMP PROGRAM*PDUMP*AMES
*LIBRARY UTILITY PROGRAM FOR*ERROR MESSAGES*AMES
*LIBRARY UTILITY PROGRAM*AMES
*LIBRARY UTILITY PROGRAM FOR*TITLE AND*DATE ON OUTPUT*PAGE *AME
*LIBRARY UTILITY PROGRAM FOR POSITIONING*TAPES*LOCATE*AMES
*LIBRARY UTILITY PROGRAM TO*REWIND AND UNLOAD MAG*TAPE*AMES
*LIBRARY*ARDC MODEL*ATMOSPHERE OF 1959*AMES
*LIBRARY*BOOLEAN OPERATION*COMPLEMENT OR*NOT*AMES
*LIBRARY*BOOLEAN GPERATION*ANO OR*INTERSECTION*AMES
*LIBRARY*BOOLEAN OPERATION*OR OR*UNION*AMES
*LIBRARY*CLOCK ACCESS PROGRAM*CLOCK*AMES
*LiBRARY*COMMON*Lu_.,,_,_M OF A ,NUMR_R*ALOGIO*AMES,,_
*LIBRARY*COSINE OF AN ANGLE*AMES
*LIBRARY*DATA CONVERSION BY ARBITRARY*FORMAT USE*AMES
*LIBRARY*DEFINE FULL LOGICAL WORD*BOOLEAN VARIABLE*AMES
*LIBRARY*DUMP COUNTING ROUTINE*COUNT*AMES

PAGE

AL

4.00

FPT
AL CVRT
AL GAUS
AL COSH
AL SINH
IBM TANH
AL SIMP
AL TAIN
IBM AND
AL ITRA
AL ITR2
AL ACOS
AL ASIN
AL ARTN
IBM ATAN
IBM ATN2
AL ALPP
AL PALP
AL LSQP
AL SCAL
AL PLOT
AL PSCA
AL POLY
AL SFAC
IBM POMP
AL EROR
AL EDFL
AL PAGE
AL LOCA
AL REWN
AL ARDC
IBM CMPL
IBM AND
IBM OR
AL CLOK
IBM ALG1
IBM COS
AL CVRT
IBM BOOL
AL COUN

KW DEC.31, 1965 CAPR - KEYWORD PERMUTED INDEX PAGE 5.00

*LIBRARY*DUMP ROUTINE*AMES
*LIBRARY*DYNAMIC*DUMP PROGRAM*DDUMP*AMES
*LIBRARY*EXPONENTIAL FUNCTION*AMES
*LIBRARY*FLOATING POINT*OVERFLOW/UNDERFLOW PROGRAM*AMES
*LIBRARY*HYPERBOLIC COSINE*COSH FUNCTION*AMES
*LIBRARY*HYPERBOLIC SINE*SINH FUNCTION*AMES
*LIBRARY*HYPERBOLIC TANGENT*TANH FUNCTION*AMES
*LIBRARY*INVERSE COSINE OR*ARCCQSINE*ACOS*AMES
*LIBRARY*INVERSE SINE OR*ARCSINE*ASIN*AMES
*LIBRARY*INVERSE TANGENT OR*ARCTANGENT*ARTN*AMES
*LIBRARY*INVERSE TANGENT OR*ARCTANGENTiATAN2*AMES
*LIBRARY*INVERSE TANGENT OR*ARCTANGENT*ATAN*AMES
*LIBRARY*LEAST SQUARES*POLYNOMIAL*CURVE FITTINGmAMES
*LIBRARY*LINEAR*SIMULTANEOUS EQUATIONS BY*CROUT METHOD*AMES
*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS LINEAR EQUATION *AME
*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS EQUATIONS SOLUT *AME
*LIBRARY*MATRIX INVERSION AND*SIMULTANEOUS EQN SOLUTION*AMES
*LIBRARY*NATURAL*LOGARITHM OF A NUMBER*ALOGiAMES
*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES
*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES
*LIBRARY*NUMERICAL INTEGRATION OF A FUNCTION*GAUSS QUAD.*AMES
*LIBRARY*NUMERICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES
*LIBRARY*NUMERICAL SOLUTION OF*DIFFERENTIAL EQUATIONS*AMES
*LIBRARY*NUMERICAL*INTEGRATION BY*SIMPSONS RULE*AMES
*LIBRARY*PARITY OF AN INTEGER*XPAR*AMES
*LIBRARY*PLOT*LABELS*AMES
*LIBRARY*PLOT*LABELS*AMES
*LIBRARY*PLOTWS PREPARES TAPE FOR*PLOTS ON*EAI XY PLOTTER*AMES
*LIBRARY*POST MORTEM*DUMP ROUTINE*CRASH*AMES
*LIBRARY*RANDOM NUMBER GENERATOR*AMES
*LIBRARY*RANDOM NUMBER GENERATOR*AMES
*LIBRARY*RANDOM NUMBER GENERATOR*AMES
*LIBRARY*READ*BINARY*TAPE*AMES
*LIBRARY*REWIND*BACKSPACE*END-OF-FILE MARK ON*MAGNETIC TAP *AME
*LIBRARY*ROOT OF AN ARBITRARY FUNCTION*NEWTON-RAPHSON*AMES
*LiBRARY*ROOT OF FUNCTION BY*iNTERVAL HALVING METHOD*AMES
*LIBRARY*ROOT OF FUNCTION BY*INTERVAL HALVING METHOD*AMES
*LIBRARY*ROOTS OF A-POLYNOMIAL*DOUBLE PRECISSION*REAL COEF *AME
*LIBRARY*ROOTS OF A-POLYNOMIAL*AMES
*LIBRARY*ROOTS OF*POLYNOMIALS WITH REAL COEFFICIENTS*AMES

IBM
AL
IBM
AL
AL
AL
IBM
AL
AL
AL
IBM
IBM
AL
AL
AL
AL
AL
IBM
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
ML

DUMP
DDMP
EXP
FPT
COSH
SINH
TANH
ACOS
ASIN
ARTN
ATN2
ATAN
LSQP
CROT
MINV
INVT
MTNV
ALOG
COWL
DE6F
GAUS
INT
ADAM
SIMP
XPAR
ALPP
PALP
PLTW
CRSH
BARN
RNDM
RDM
BNIN
NDID
ROOT
ITRA
ITR2
DPMU
ROP
HPRS

K_ DEC.31, 1965 CAPR - KEYWORD PERMUFED INDEX PAGE 6.00

*LIBR
*LIBR
*LIBR
*LIBR
*LIBR
*LIBR
*LINE
*LINE
*LOCA
*LOGA
*LOGA
*MAGN
*MATR
*MATR
*MATR
*NATU
*NEWT
NOT
*NUME
*NUME
*NUME
*NUME
*NUME
*NUME
*OR 0
*OVER
*PAGE
*PARI
*PDUM
*PLOT
*PLOT
*PLOT
*PLOT
*PLOT
*PLOT
*PLOT
*PLOT
*POLY
*POLY
*POLY

ARY*SIMULTANEOUS*LINEAR EQUATIONS*AMES
ARY*SINE OF AN ANGLE*AMES
ARY*SMOOTH AND*DIFFERENTIATE SET OF DATA POINTS*AMES
ARY*SQUARE ROOT FUNCTION*AMES
ARY*TABLE LOOK-UP AND*INTERPOLATION BY*AITKEN METHOD*AMES
ARY*TANGENT FUNCTION*AMES
AR EQUATIONS*AMES*LIBRARY*SIMULTANEOUS
AR*SIMULTANEOUS EQUATIONS BY*CROUT METHOD*AMES*LIBRARY
TE*AMES*LIBRARY UTILITY PROGRAM FOR POSITIONING*TAPES
RITHM OF A NUMBER*ALOGIO*AMES*LIBRARY*COMMON
RITHM OF A NUMBER*ALOG*AMES*LIBRARY*NATURAL
ETIC TAP *AMES*LIBRARY*REWIND*BACKSPACE*END-OF-FILE MARK O
IX INVERSION AND*SIMULTANEOUS EQN SOLUTION*AMES*LIBRARY
IX INVERSION AND*SIMULTANEOUS LINEAR EQUATION *AMES*LIBRAR
IX INVERSION AND*SIMULTANEOUS EQUATIONS SOLUT *AMES*LIBRAR
RAL*LOGARITHM OF A NUMBER*ALOG*AMES*LIBRARY
ON-RAPHSON*AMES*LIBRARY*RONT OF AN ARBITRARY FUNCTION
AMES*LIBRARY*BOOLEAN OPERATION*COMPLEMENT OR
RICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES*LIBRARY
RICAL INTEGRATION OF A FUNCTION*GAUSS QUAD.*AMES*LIBRARY
RICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES*LIBRARY
RICAL INTEGRATION OF*DIFFERENTIAL EQUATIONS*AMES*LIBRARY
RICAL SOLUTION OF*DIFFERENTIAL EQUATIONS*AMES*LIBRARY
RICAL*INTEGRATION BY*SIMPSONS RULE*AMES*LIBRARY
R'UNION*AMES*LIBRARY*BOOLEAN OPERATION
FLOW/UNDERFLOW PROGRAM*AMES*LIBRARY*FLOATING POINT
*AMES*LIBRARY UTILITY PROGRAM FOR*TITLE AND*DATE ON OUTPU

TY OF AN INTEGER*XPAR*AMES*LIBRARY
P'AMES*LIBRARY SELECTIVE*DUMP PROGRAM
PROGRAM*AMES*LIBRARY DUMMY
PROGRAM*AMES*LIBRARY DUMMY

*LABELS*AMES*LIBRARY
*LABELS*AMES*LIBRARY
S GENERATED BY*EAI PLOTTER*AMES*LIBRARY PRINT*SCALES ON
S ON*EAI XY PLOTTER*AMES*LIBRARY*PLOTWS PREPARES TAPE FOR
S'AMES*LIBRARY COMPUTE*SCALE FACTORS FOR
WS PREPARES TAPE FOR*PLOTS ON*EAI XY PLOTTER*AMES*LIBRARY
NOMIAL*AMES*LIBRARY*ROOTS OF A
NOMIAL*AMES*LIBRARY EVALUATION OF A
NOMIAL*CURVE FITTING*AMES*LIBRARY*LEAST SQUARES

AL
IBM
AL
IBM
AL
AL
AL
AL
AL
IBM
IBM
AL
AL
AL
AL
IBM
AL
IBM
AL
AL
AL
AL
AL
AL
IBM
AL
AL
AL
IBM
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL

LSQS
SIN
DIF3
SORT
TAIN
TAN
LSQS
CROT
LOCA
ALGI
ALOG
NDID
MTNV
MINV
INVT
ALOG
ROOT
CMPL
COWL
GAUS
DE6F
INT
ADAM
SIMP
OR
FPT
PAGE
XPAR
PDMP
PSCA
PLOT
ALPP
PALP
SFAC
PLTW
SCAL
PLTW
ROP
POLY
LSQP

KW OEC.31w 1965 CAPR - KEYWORD PERMUTED INDEX

*POLYNOMI
*POLYNOMI
*POST MOR
*RANDOM N
*RANDOM N
*RANDOM N
*READ*BIN
*REAL COE
*REWIND A
*REWINO*B
*ROOT OF
*ROOT OF
*ROOT OF
*ROOTS OF
*ROOTS OF
*ROOTS OF
*SCALE FA
*SCALES 0
*SIMPSONS
*SIMULTAN
*SIMULTAN
*SIMULTAN
*SIMULTAN
*SIMULTAN
*SINE OF

AL*OOUBLE PRECISSION*REAL COEF *AMES*LIBRARY*ROOTS OF
ALS WITH REAL COEFFICIENTS*AMES*LIBRARY*ROOTS OF
TEM*DUMP ROUTINE*CRASH*AMES*LIBRARY
UMBER GENERATOR*AMES*LIBRARY
UMBER GENERATOR*AMES*LIBRARY
UMBER GENERATOR*AMES*LIBRARY
ARY*TAPE*AMES*LIBRARY
F *AMES*LIBRARY*ROOTS OF A'POLYNOMIAL*DOUBLE PRECISSIO
ND UNLOAD MAG*TAPEmAMES*LIBRARY UTILITY PROGRAM TO
ACKSPACE*END-OF-FILE MARK ON*MAGNETIC TAP *AMES*LIBRAR
AN ARBITRARY FUNCTION*NEWTON-RAPHSON*AMES*LIBRARY
FUNCTION BY*INTERVAL HALVING METHOD*AMES*LIBRARY
FUNCTION BY*INTERVAL HALVING METHOD*AMES*LIBRARY

AtPOLYNOMIAL*DOUBLE PRECISSION*REAL COEF mAMES*LIBRAR
AuPOLYNOMIAL*AMES*LIBRARY

*POLYNOMIALS WITH REAL COEFFICIENTS*AMES*LIBRARY
CTORS FOR*PLOTS*AMES*LIBRARY COMPUTE
N'PLOTS GENERATED BY*EAI PLOTTER*AMES*LIBRARY PRINT

RULE*AMES*LIBRARY*NUMERICAL*INTEGRATION BY
EOUS EQN SOLUTION*AMES*LIBRARY*MATRIX INVERSION AND
EOUS EQUATIONS BY*CROUT METHOD*AMES*LIBRARY*LINEAR
EOUS EQUATIONS SOLUT *AMES*LIBRARY*MATRIX INVERSION AN
EOUS LINEAR EgUATION *AMES*LIBRARY*MATRIX INVERSION AN
EOUS*LINEAR EQUATIONS*AMES*LIBRARY
AN ANGLE*AMES*LIBRARY

*SINH FUNCTION*AMES*LIBRARY*HYPERBOLIC SINE
*SMOOTH AND*DIFFERENTIATE SET OF OATA POINTS*AMES*LIBRARY
*SQUARE ROOT FUNCTION*AMES*LIBRARY
*TABLE LOOK-UP AND*INTERPOLATION BY*AITKEN METHOD*AMES*LIBRARY
*TANGENT FUNCTION*AMES*LIBRARY
*TANH FUnCTION*AMES*LIBRARY*HYPERBOLIC TANGENT
'TAPE*AMES*LIBRARY UTILITY PROGRAM TO*REWIND AND UNLOAD MAG
*TAPE*AMES*LIBRARY*READ*BINARY
*TAPES*LOCATE*AMES*LIBRARY UTILITY PROGRAM FOR POSITIONING
*TITLE AND*DATE ON OUTPUT*PAGE mAMES*LIBRARY UTILITY PROGRAM FO
*UNION*AMES*LIBRARY*BOOLEAN OPERATION*OR OR
*×PAR*AMES*LIBRARY*PARITY OF AN INTEGER

PAGE 7.00

AL DPMU
ML HPRS
AL CRSH
AL BARN
AL RNDM
AL RDM
AL BNIN
AL DPMU
AL REWN
AL NDID
AL ROOT
AL ITR2
AL ITRA
AL DPMU
AL ROP
ML HPRS
AL SCAL
AL SFAC
AL SIMP
AL MTNV
AL CROT
AL INVT
AL MINV
AL LSQS
IBM SIN
AL SINH
AL DIF3
IBM SQRT
AL TAIN
AL TAN
IBM TANH
AL REWN
AL BNIN
AL LOCA
AL PAGE
IBM OR
AL XPAR

SI

BI

B2

BB

B4

CI

C2

C3

C5

DI

DEC.31, 1965 CAPR - SUBJECT CODE INDEX PAGE 1.00

ELEMENTARY FUNCTIONS,
AL ACOS
AL ARTN
AL ASIN
AL TAN
IBM ATAN
IBM ATN2
IBM COS
IBM SIN

TRIGONOMETRIC
AMES LIBRARY-INVERSE COSINE FUNCTION
AMES LIBRARY-INVERSE TANGENT FUNCTION
AMES LIBRARY-INVERSE SINE FUNCTION
AMES LIBRARY TANGENT FUNCTION
AMES LIBRARY-INVERSE TANGENT FUNCTION
AMES LIBRARY-INVERSE TANGENT FUNCTION ATAN2
AMES LIBRARY COSINE OF AN ANGLE
AMES LIBRARY SINE OF AN ANGLE

ELEMENTARY FUNCTIONS, HYPERBOLIC
AL COSH AMES LIBRARY HYPERBOLIC COSINE FUNCTION COSH
AL SINH AMES LIBRARY HYPERBOLIC SINE FUNCTION SINH
IBM TANH AMES LIBRARY HYPERBOLIC TANGENT FUNCTION

ELEMENTARY FUNCTIONS, EXPONENTIAL AND LOGARITHMIC
IBM ALGI AMES LIBRARY ALOGIO-COMPUTE COMMON LOGARITHMS
IBM ALOG AMES LIBRARY-COMPUTE NATURAL LOGARITHM
IBM EXP AMES LIBRARY EXPONENTIAL FUNCTION

ELEMENTARY FUNCTIONS, ROOTS AND POWERS
IBM SQRT AMES LIBRARY SQUARE ROOT FUNCTION

POLYNOMIALS + SPECIAL FUNCTIONS, EVALUATION OF POLYNOMIALS
AL POLY AMES LIBRARY EVALUATION OF A POLYNOMIAL

POLYNOMIALS + SPECIAL FUNCTIONS, ROOTS OF POLYNOMIALS
AL DPMU AMES LIBRARY-ROOTS OF A POLYNOMIAL IN DOUBLE PRECISION
AL ROP AMES LIBRARY ROOTS OF A POLYNOMIAL
ML HPRS AMES LIBRARY-ROOTS OF POLYNOMIAL WITH REAL COEFFICIENTS

POLYNOMIALS + SPECIAL FUNCTIONS, EVALUATION OF SPECIAL FUNCTIONS
AL ARDC AMES LIBRARY-ARDC MODEL ATMOSPHERE OF 1959

POLYNOMIALS + SPECIAL FUNC. SIMULTANEOUS TRANSCENDENTAL EQUATIONS
AL ITRA AMES LIBRARY-ROOT OF FUNCTION BY INTERVAL HALVING METHOD
AL ITR2 AMES LIBRARY-ROOT OF FUNCTION BY INTERVAL HALVING METHOD
AL ROOT AMES LIBRARY ROOT OF AN ARBITRARY FUNCTION

OPER ON FUNC ÷ SOLUTIONS OF DIFFERENTIAL EQUA, NUMERICAL INTEGRATION

SI

DI

O2

D4

El

E2

E3

FI

F4

14

JO

DEC.31, 1965 CAPR - SUBJECT CODE INDEX PAGE 2.00

OPER ON FUNC + SOLUTIONS OF DIFFERENTIAL EQUA, NUMERICAL INTEGRATION
AL GAUS AMES LIBRARY NUMERICAL INTEGRATION PROGRAM GAUSS
AL SIMP AMES LIBRARY-NUMERICAL INTEGRATION BY SIMPSONS RULE

NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS
AL ADAM AMES LIBRARY NUMERICAL SLN OF DIFFERENTIAL EQUATIONS
AL COWL AMES LIBRARY-NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATI
AL OE6F AMES LIBRARY NUMERICAL INTEGRATION OF DIFFERENTIAL EQNS
AL INT AMES LIBRARY NUMERICAL INTEGRATION OF DIFFERENTIAL EQNS

OPER OF FUNC + SOLUTIONS OF DIFFERENTIAL EQUA. NUMERICAL DIFFEREN.
AL DIF3 AMES LIBRARY SMOOTH AND DIFFERENTIATE SET OF DATA POINTS

INTERPOLATION AND APPROXIMATIONS, TABLE LOOK-UP AND INTERPOLATION
AL TAIN AMES LIBRARY-TABLE LOOK-UP AND INTERPOLATION,BINARY SEARC

INTERPOLATION A_D APPROXIMATIONS, CURVE FITTING
AL LSQP AMES LIBRARY LEAST SQUARES POLYNOMIAL CURVE FITTING

INTERPOLATION AND APPROXIMATIONS, SMOOTHING
AL DIF3 AMES LIBRARY SMOOTH AND DIFFERENTIATE SET OF DATA POINTS

OPER ON MATRICES,VECTORS + SIMUL LINEAR EQUA. MATRIX OPERATIONS
AL INVT AMES LIBRARY-MATRIX INVERSION AND SIMULTANEOUS EQN SOLUTI
AL MINV AMES LIBRARY-MATRIX INVERSION AND SIMULTANEOUS LINEAR EQN
AL MTNV AMES LIBRARY MATRIX INVERSION AND SIMULTANEOUS EQUATIONS

OPER ON MATRICES,VECTORS + SIMUL LINEAR EQUA., SIMUL LINEAR EQUA.
AL CROT AMES LIBRARY-LINEAR SIMULTANEOUS EQNS BY CROUT METHOD
AL INVT AMES LIBRARY-MATRIX INVERSION AND SIMULTANEOUS EQN SOLUTI
AL LS_S AMES LIBRARY-SIMULTANEOUS LINEAR EQUATIONS
AL MINV AMES LIBRARY-MATRIX INVERSION AND SIMULTANEOUS LINEAR EON
AL MTNV AMES LIBRARY MATRIX INVERSION AND SIMULTANEOUS EQUATIONS

INPUT, BCD HOLLERITH
AL BNIN AMES LIBRARY- READ BINARY TAPE

OUTPUT
AL LOCA AMES LIBRARY TAPE POSITIONING PROGRAM LOCATE
AL NDID AMES LIBRARY-REWIND, BACKSPACE AND EOF ON MAGNETIC TAPE

J4

J5

K2

M2

M4

N2

_3

Vl

ZO

DEC.31, 1965 CAPR- SUBJECTCODEINDEX PAGE 3.00

OUTPUT,
AL
AL

BCDHOLLERITH
PAGE AMESLIBRARYUTILITY PROGRAMFORTITLE ANDDATEONDATA
PLTW AMESLIBRARYPLOTWSPREPARESPLOTTAPEFOREAI PLOTTER

OUTPUT, PLOTTING
AL ALPP
AL PALP
AL PLOT
AL PSCA
AL SCAL
AL SFAC

AMES LIBRARY -PLOT LABELLING ROUTINE
AMES LIBRARY-PLOT LABELLING ROUTINE
AMES LIBRARY DUMMY PLOT PROGRAM
AMES LIBRARY DUMMY PLOT PROGRAM

AMES LIBRARY-COMPUTE SCALE FACTORS FOR PLOTS
AMES LIBRARY-PRINT SCALES ON PLOTS MADE ON EAI DATAPLOTTE

INTERNAL INFORMATION TRANSFER,
AL CVRT

DATA HANDLING,
AL CVRT

DATA HANDLING,
AL CVRT

RELOCATION
AMES LIBRARY-DATA CONVERSION BY ARBITRARY FORMAT USE

CONVERSION AND/OR SCALING
AMES LIBRARY-DATA CONVERSION BY ARBITRARY FORMAT USE

CHARACTER MANIPULATION
AMES LIBRARY-DATA CONVERSION BY ARBITRARY FORMAT USE

DEBUGGING, DUMPING
At COUN
AL CRSH
AL DDMP
IBM DUMP
IBM PDMP

AMES LIBRARY-DUMP COUNTING ROUTINE
AMES LIBRARY-POST MORTEM DUMPING PROGRAM CRASH
AMES LIBRARY DYNAMIC DUMPING PROGRAM DDUMP
AMES LIBRARY DUMP ROUTINE
AMES LIBRARY PDUMP PROGRAM

REWIND, TAPE MARK, LOAD CARDS, LOAD TAPE, ETC. PROGRAMS
AL REWN AMES LIBRARY UTILITY PROGRAM TO REWIND AND UNLOAD TAPE

GEN PURPOSE UTILITY SUBROUTINES, RANDOM NUMBER GENERATORS
AL BARN
AL RDM
AL RNDM

ALL OTHERS
AL CLOK
AL EDFL
AL EROR

AMES LIBRARY- RANDOM NUMBER GENERATOR
AMES LIBRARY-RANDOM NUMBER GENERATOR
AMES LIBRARY-RANDOM NUMBER GENERATOR

AMES LIBRARY CLOCK ACCESS PROGRAM
AMES LIBRARY UTILITY PROGRAM
AMES LIBRARY UTILITY PROGRAM FOR ERROR MESSAGES ERROR

)SI DEC.31, 1965 CAPR - SUBJECT CODE INDEX PAGE 4.00

ZO ALL OTHERS
AL FPT
AL XPAR
IBM ANO
IBM BOOL
IBM CMPL
IBM OR

AMES LIBRARY FLOATING POINT OVERFLOW PROGRAM
AMES LIBRARY-DETERMINATION OF PARITY OF AN INTEGER
AMES LIBRARY-BOOLEAN OPERATION AND OR INTERSECTION
AMES LIBRARY-DEFINE FULL LOGICAL WORD (BOOLEAN)
AMES LIBRARY-COMPL-BOOLEAN OPERATION COMPLEMENT OR NOT
AMES LIBRARY-BOOLEAN OPERATION OR OR UNION

SUMMARIES

BI

Identification

AL ACOS--ASIN, Inverse Sine and Cosine Functions

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine NA135.3

(See writeup for AL ASIN-ACOS).

D2

Identification

AL ADAM, Numerical Integration of First Order Differential Equations by the

Adams Method

FORTRAN IV

Written by J. A. Jeske

Purpose

This subroutine is used to obtain the numerical solution of the system of N

ordinary differential equations

_ = f (x,y i ..-,) (i=l, 2, N)

where the prima indicates differentiation with respect to the independent variable x•

The initial conditions are:

Yl (Xo)= (Yl)o

Y2 (Xo) = (Y2)o

Yn (Xo) " (Yn)o

Both forward and backward starting procedures are provided.

This subroutine is entered via

where
CALL ADAMS (X, T, DERIV, H, M, N),

X

T

DERIV(X,T)

is the independent variable

is a two dimensional array that contains values of y. and y_

(see table below), TI_st be dimensioned (9,N) in th_ calli_g

program

is a user sup_lie@ subroutine that computes the first

derivatives >_, y_, ..., 2_ and stores them in T(2,1), T(2,2),

..., T(2,N) the name DERIV (or whatever name the user chooses)

nmst appear in an EXTERNAL specification statement in the

calling program.

H is the interval in X over which integration is to take place.

M is a special code where

M = -I backward starter

M = 0 forward starter

M > 1 indicates that integration is to be performed from

X to X +_.

N is the number of differential equations in the system•

Note that for M = -i or M = 0, only a setup function is performed. The

subroutine must be called using one of the starting procedures before

integration can be performed. Each call where integration is specified

(M > I) can be carried out without reinltiatlng a starting procedure.

If, however, the interval size H is to be changed, a new start must be made.

-2-

The array T is loaded as follows:

T(I, I) = YI

T(I,2) = Y2

T(I,N) = Yn

T(2,1) = Y1
!

T(2,2) = Y2

T(2,N) = Y'
n

The user places initial values here prior to a

starter entry

The user's subroutine DERIV places first derivatives here.

If it is desired to examine the backward differences _fl' _2fl, "'''

after any entry, they may be found in T(3,1), T(4,1), ..., T(7,1), where

I = i, 2, ..., N,

V5fl

Method

A fourth-order Adams first sum predictor-corrector method is used for

continued integration, and an iterated fourth order Adams first sum method

is used for the starters (see reference).

The predictor is given by the equations

Y*m+l = Am + h _ 7_l,k+ I

--O

f* +lffif(Xm+l,KY* +I)

and the corrector by

Ym+l ffiY*m+l + hY-l,5

fm+l = f(Xm+l, Ym+l)

Am+ I = Am + hfmm I

kf m

_5 f*m+l

where _ l'J are constants and A is the first sum. Note that in the above
- _ m

equations m corresponds to xm at the mth integration step• Also, the

equations are written in vector form, that is Ym = (Ym I' Ym, 2' "''' Ym, n)

The backward starter iterates the following eight times:

p ffi 1(114
4-

y.p =Ao+ h I Y 4;P,m_-ty_
t_t=O

f.p ffif(X.p, y_p)

Ao ffi Yo " h _ 3'4,o,m_-._

-3-

where the _4,i,J are constants.

Initial values are given by

Ao = Yo + %hf_.

The ordinates Yo' Y-I' "''' Y-4 are then converted to backward differences

Vfo, 2fb , V4f . .

The equations for the backward starter are transformed to those ,at the

forward starter by means of the transformation

h _ -h

Y-m---_ Ym

f-m--_ fm

The resulting ordinates Yo' YI' _''' Y_ are then converted to backward

differences TTf_, VTZf , _+f--_ at_x = xo + _h. Shifting theseT # _ 4 V. 5differences to xo is accomplished by assuming_ f_ = 0. The final result

is the backward differences _fo, _Zfo, ..., _4_o.

A more complete discussion of the method and the values of all the constants

may be found in the reference.

Reference

Mersman, William A: Self-startlng Multi-step Methods for the

Numerical Integration of Ordinary Differential Equations.

NASA TN D-2936, 1965

Identification

ALALPP, Prints Alphanumeric and Special Characters on EAI Dataplotter

Plots Using a 48-Character Symbol Printer

FORTRAN IV, MAP-coded

Written by Melba Perniciaro

Purpose

This subroutine is used to print any of 48 alphanumeric and special characters

(including blank) at a desired location in either the X or Y direction. Its primary

use is the titling and annotation of plots prepared with the FORTRAN IV routines

AL FLOTWS or AL MPLT, using an EAI Dataplotter equipped with a 48-character symbol
printer.

The calling sequence for AL ALPP is:

CALL ALPP (ORIGX, ORIGY, ARRAY, NUM, NTAPE, NXORY)

The symbols in the CALL statement are defined as follows:

ORIGX_ The horizontal and vertical coordinates, respectively, (measured in

ORIGYJ signed inches from the center of the page of plotting paper) of
the first character to be printed.

ARRAY An array containing the alphanumeric characters (including blanks)

to be printed, 6 characters/word, or a Hollerith string of the

form nH..., where n=NUM.

NUM The number of characters (including blanks) to be printed.

NTAPE The logical number of the plot tape.

NXORY A code word controlling the direction the characters are printed:

If NXORY = +I, the characters are printed in the X direction.

If NXORY = -I, the characters are printed in the Y direction.

Restrictions

The argument "ARRAY" in the calling sequence must be one of the following:

I. A Hollerith string of the form nH..., where n is the number of characters

(including blanks) to be printed.

Example: CALL ALPP (ORIGX, ORIGY,

23HTHIS IS A SAMPLE TITLE.,23,NTAPE,NXORY)

2. An array containing alphanumeric information in BCD form, 6 characters/word.

The array can be filled from cards using the "A" format or with a DATA statement.

In this routine, the Hollerith character "blank" must be used for spacing. Thus, the

special character_ (which corresponds to "blank" in the FORTRAN IV library routine
AL PLOTWS) is not available in AL ALPP.

Although the plotting paper is approximately 30 inches square, the actual area

available for plotting is quite different. In the X direction, we must allow

an inch on either side of the paper to keep the pen and printer arms from colliding.

In the Y direction, we must allow 1-3/4" on either side for the width of the printing

attachment. Thus, any plotting information, and thus al._!lcharacters to be printed

by AL ALPP, must be confined to an area of 28 inches by 26% inches.

Z

Discussion

The 48 characters available are: Hollerith character Symbol

0-9 0-9

A- Z A- Z

))

+ +

- (minus) - (minus)

! /
- (dash)

Q
blank spaces the printer i/I0"

The first character printed is more or less centered about the point (ORIGX, ORIGY),

followed by the other characters, printed in the direction specified. Corresponding

points on adjacent characters are I/I0" apart, and spaces between words (i.e., the

character "blank") are also I/I0".

For maximum efficiency this routine is written to use the "select and print" mode of

the plotter. In this mode there is virtually no delay for changing the character to

be printed since this is done as the plotter moves to the point where the new symbol

is to be written.

Examples

I.

(See attached sheets)

The characters along the top and right sides of the page illustrate the actual appear-

ance of all the characters available. For the top, a DATA statement was used to

fill an array ALPHA (dimension 8) with the Hollerith information desired.

DATA (ALPHA (IO), IO=I, 8)/481{0123...)- $/

CALL ALPP (0.0, 5.75, ALPHA, 48, 7, +i)

For the right side, a string of Hollerith characters was used in the CALL statement:

CALL ALPP (6.5, 1.5, 48H0123...)-$, 48, 7, -I)

For the graph at the bottom of the page, AL PLOT was used for the curve and axes;

AL SFAC produced the scale factors on the axes; and AL ALPP labelled the plot.

In this case, the characters to be printed by AL ALPP were read into arrays OMS

(dimension _), CYC (dimension _), and CAP (dimension _) from cards, using the

"A" format. The calling sequences for AL ALPP were:

CALL ALPP (-0.5, 1.5, OMS, 2_/3, 7, -i)

CALL ALPP (0.5, 0.25,CYC, 29, 7, +i)

CALL ALPP (4.0, 3.5, CAP, 11,_7, +I)

II. The second page of examples shows the labels to be used on a set of 18 plots.

a

101

DIMENSION STALOC (2,20), IDATE (2,20), ITIME (20) ,ARRAY (5), ORIG (2,20),

1 woRK(s),lwoRK(5), (4), (i)
EQUIVALENCE (WORK(l), IWORK(1))

DATA(FMTI (IO), IO=l, 4)/24H(2A6,2H, ,A6, A2,2H, ,I4)/, FMT2 (I) /

1 5H(5A6) /

KOUNT=O

DO 101 Iffil,NOSTA

WORK (i) _STALOC (I, I)

WORK (2) =STALOC (2, I)

DO i01 J=I,NODATE

1-WORK (3) ffiIDATE (i,J)

IWORK (4) -IDATE (2, J)

DO 101 Kffil,NOTIME

IWORK (5) fliTIME (K)

CALL CVRT (WORK, 5, FMTI, ARRAY, 5, FMT2)

KOUNTffiKOUNT+ i

CALL ALPP (ORIG (KOUNT, I), ORIG (KOUNT, 2),ARRAY, 28,7, +i)

CONTINUE

Note that the numerical information in the labels was generated within the program.

It was converted to the proper form by using the FORTRAN IV subroutine AL CVRT.

References

i. FORTRAN IV library routines AL PLTW(PLOTWS) and AL PLOT.

2. FORTRAN IV routine AL MPLT.

3. FORTRAN IV routine AL SFAC.

4. FORTRAN IV routine AL CVRT.

4

i
r,3

1o,4
I

i=1
(J
Z
• Z
I-.-
(J

LIJ
/v"

0

0 1254567BgABCDEFGHIJKLMNOPQRSTUVWXYZ _/, _ ().EP.)

C I25456789ABCDEFGHIJF, LMNOPQRSTUVWXYZ .T.+.-.+-/. , ()DE)

C = I00 UUF

¢|<., 5,33 B,66 I I ,99 15,52 18,65 21,98

B

®

u_

Obl

o

E-I

FREQUENCY -- KILOCYCLES X I000

,F

JOHANNE_III,mG', 12,,,'01/64, _J30

JOHANNESBURG, 12/01/64, I._;30

JOHANNESBURG, 04/16/66, 930

JOHANNESBURG, 04/16/66, 1530

JOHANNESBURG," 08/51/68, cJSO

JOHANNESBURG, 08/3 1/68, 1530

PUERTO RICO , 12/01/64, _50

PUERTO RICO , 12/01/64, 1550

PUERTO RtCO, 04/16/66, _30

PUERTO RICO , 04/16,/66, 1550

PUERTO RICO , 08/31/68, 950

PUERTO RICO , 08/31/68, 1550

GRAND BAHAMA, 12/01/64, 950

GRAND BAHAMA, 12/01/64, 1_)50

GRAND BAHAMA, 04/16/66, 930

GRAND BAHAMA, 04/16/66, 1530

GRAND BAHAMA, 08/51/68, 950

GRAND BAHAMA, 08/31/68, 1530
i :

-I-

C3

Identification

AL ARDC (ARDCI) Altitude Function Subroutine

FORTRAN IV, MAP-coded

Ames Modification of G.E. Program Library No. 704-082,

Altitude Function Subroutine

Purpose

This subroutine is used to calculate the functions of geometric

altitude given by the ARDC Model Atmosphere of 1959.

Usage

This subroutine is entered by use of the statement

CALL_Cl(ALT,ANS)

where

ALT is the altitude above the surface of the earth, in meters.
(ALT_ lOU meters)

ANS is an array of dimension 12 that contains the results

upon return from the subroutine

The arrangement, in ANS, of the computed quantities is given next.

Location Quantity Units

_s(2)
;_s(3)
A_s(4)

ANS(6)
A_S(7)
A_S(S)
ANS(9)

A_S(IO)
A_s(n)
A_S(12)

pressure/pressure at sea level

acceleration of gravity

velocity of sound

kinematic viscosity

Viscosity/viscosity at sea level

Viscosity

density/denslty at sea level

density

pressure at sea level minus

pressure at given altitude

pressure

real kinetic temperature

molecular temperature

M/sec e

M/sec

Ma/sec

KG(mass)/M sec

KG(force)sec2/M4
KG(force)/M 2

KG(force)/M 2

deg Kelvin

deg Kelvin

c3

Usage (continued)

The definitions

KG(force) force in kilograms

KG(mass) mass in kilograms

M meters

sec seconds

are employed in the foregoing. If the density is required in

the units KG(force)/M 3, it may be obtained directly from the

product ANS (8)_6ANS (2) •

Restrictions

The velocity of sound, kinematic viscosity, viscosity/viscosity

at sea-level, and the viscosity are not determined, and cells

ANS(3-6) are set to zero, for ALT above691,293 meters. The input
altitude must always be smaller than l0 meters.

The divide check light is tested upon entrance into the subroutine.

If it is on at this time, it is turned off and a message is printed.

Computation then proceeds. The divide check light is again tested

prior to exit from the subroutine, and if it is on a message will

be printed. Computation is then halted and EXIT is called.

Required Subroutines

The subroutines ATAN, SQRT, EXP, and ALOG, all of which are on

the FORTRAN IV library tape, are used by AL ARDC (ARDCI)

C3

Method

The tabulated functions given by the ARDC Model Atmosphere, 1959,

are approximated over specific altitude ranges by various poly-
nomials amd other functions.

References

Minzner, R. A., Champion, K.S.W., and Pond, H.L.:

The ARDC Model Atmosphere, 1959. Air Force Surveys
in Geophysics No. ll5 (AFCRC-TR-59-267), Air Force

Cambridge Research Center, August, 1959.

B1

Identification

ALARTN, Inverse Tangent Function

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine LA $840

Purpose

This subroutine is used to compute the value of the function

Y = Arctan (X/Z), where X, Y, and Z are single-precision floating-

point numbers, and Y is in radians.

Usage

This subroutine is entered by U_e of the statement

Y = _TN(X,Z)

The result will be in the correct quadrant in the range -_ to +_.

Special Case

If this subroutine is entered with X = Z = 0, the value returned
will be zero.

Timing

The average execution time for this subroutine is 362 _s.

Method

A continued fraction approximation is employed in this computation.

BI

Identification

ALASIN-ACOS, Inverse Sine and Cosine Functions

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine NA 135.3

Purpose

This subroutine is used to compute the value of the functions

Y = Arcsin(X) and Y = Arccos(X), where X is a single-precision

floating-point argument.

usage

This subroutine is entered by use of arithmetic statements, e.g.,

Y = ASIN(X), -_/2 _Y <_._/2

and

Y = ACOS(X), 0_< Y < _"

Error Condition

If the absolute value of X is greater than one, an error trace is

initiated, and a message is printed out.

Accuracy

The results from the use of this subroutine are accurate to 7

significant figures•

Timin_

The average computing time for ASIN(X) and ACOS(X) are 399 _ s

and 404._s respectively.

b

-2-

B1

Method

A. Arcsin(X)

Arcsin(X) = _/2-_ i - X F(X)

F(x) = Co + cix + cex2 + ... + cTx?

The constants Co, C1, ..., C7 are

Co = +1.570796327

C1 = -0.2145988016

C2 = +O.0889789874

C3 = -0.0501743046

B. Arccos(X)

C4 = +0.0308918810

C5 = -0.O17O881256

C6 = +0.0066700901

C7 = -0.0012624911

A_ccos(X): _/2- A_csln(X)

References

Hastings, Cecil, Jr.: Approximations for Digital Computers.

Princeton University Press, 1955.

V1

Identification

AL BARN, AL RNDM, Random Number Generators

FORTRAN IV, MAP - coded

Ames Modifications of SHARE Library Routine BA N203

Purpose

These are two identical subroutines designed to generate a member of either

of two sets of random numbers. One set is uniformly distributed on the unit

interval, and the other is normally distributed with zero mean and unit

standard deviation.

The statements

x =_M (+i)
x : _ (+i)

will generate a random normalized floating-point number which is a member of

the set that is uniformly distributed on the unit interval.

The statements

X = RANDOM (-1)

X =_(-I)

will generate a random normalized floating-point number which is a member of

the set that is normally distributed with zero mean and unit standard deviation.

Discussion

The random numbers generated by the two subroutines are identical for the

same run, and so it is possible to produce two sequences of random numbers by

intermixing the use of the two.

Method

The uniformly distributed set of random numbers is generated by the method of

congruence. That is_ the nth member of the set is

= KnxoMOd MXn
where

K = 991

= _21,528,735
2_i iM

The mean of this set

= XdX = 1/2_X

and the variance is

_o l
_x2 = (x- i/e)2 _ = 1/iz

If X is the mean of any selection of n of the uniform numbers, the Central

Limit Theorem states that the variable X approaches a normal distribution

where n is sufficiently large. Aiso_

and
a aXa i

n 12n

Vl

The random variabl_ f----
Y: i/2)

2

distributed with _y: 0 and _; = 1. A satisfactoryis normally

value of n is 203 for which

Thus, the normally distributed set is constructed from the uniform set.

References

_ohnson, D. L.: Generating and Testing Random Numbers on the IBM Type 701.

Boeing Airplane Company Document DI-6717, March 8, 19_5.

Lehmer, D.A.: Mathematical Methods in Large-Scale Computing Units.
Proceedings of the Second Symposium on Large-Scale Digital

Calculating Machinery, Harvard University Press, Cambridge, Mass., 19_1.

page 2

I1

Identification

AL BNIN, Subroutine to Read Binary Information From Tape

FORTRAN IV, MAP-coded

Written by B. L. Meyer

Purpose

This subroutine is used to read binary physical records of arbitrary length from

magnetic tape.

Usage

The calling statement is

where

CAL BNIN(LTN,A,N, I)

LTN is the logical tape number

A is an array into which binary records are read

N is the number of 36-bit binary words to be read from tape in

a single record

I is an error return such that I = 0 for normal return

= 1 for E0F on tape

= 2 for redundant record on tape

Discussion

Upon execution of the CALL statement, a binary record is read into array A.

This array must be of dimension at least N. There is no restriction on the

size of binary records that may be read with the use of this subroutine•

Restriction

The program that uses ALBNIN should not contain any FORTRAN tape manipulation statements

for the tape unit referenced by ALBNIN. A special subroutine, ALNDID, has been

prepared for the special purpose of rewinding and backspacing these tapes•

AL LOCA may be used with these tapes, also. .

References

AL LOCA ; Ames FORTRAN IV Library Subroutine

ALNDID Ames FORTRAN IV Library Subroutine.

Z0

Identification

AL CLOK (CLOCK), Access the Computer-Controlled Clock

FORTRAN IV, MAP-coded

Purpose

This program provides access to the computer-controlled clock

at any point in a program.

The clock is accessed by the statement

CALL CLOCK(X)

where X is the time, in minutes, from an arbitrary reference. This

time is accurate to a sixtF_h of a second•

Timin_

The access time to the clock, using this subroutine, is approximately
.227 ms.

References

This program is based on information in CEI31, IBM Special Systems

Bulletin "IBM Program Accounting Clock, RPQ78054".

B2

Identification

AL COSH, SIN-H, Hyperbolic Sine and Cosine Function

See writeup for FORTRAN IV Library Routine AL SINH.

N2

Identification

AL COUN (COUNT), Counting Routine for Use with AL DDMP

FORTRAN IV_ MAP-coded

Written by V. L. Sorensen

Purpose

This routine is used in conjunction with the program AL DDMP in

order to be able to execute a CALL DDL_MP every K-th time, rather

than every single time.

Usage

The subroutine COUNT is called by use of the statement

CALL COUNT(I,J,K)

which must immediately preceed the CALL DDUMP statement that is

to be controlled. The CALL DDUMP will be executed the I-th time,

and every K-th time thereafter until J is exceeded.

N2

Identification

AL CRSH (CRASH), Post-Mortem Dumping Routine

The program AL CRSH is not on the Library tape, and must be requested

by use of a $DECK Control card. The library tape contains a dummy

procedure, however, so that CALL CRASH statements need not be removed

from FORTRAN IV decks.

Writeups for AL CRSH are available in the CAB library files.

D2

Identification

AL COWL, Numerical Integration of Second Order Differential Equations
by the Cowell Method

FORTRAN IV

Written by M. M. Resnikoff

Purpose

This subroutine is used to obtain the numerical solution of the system

of N ordinary differential equations

Yl = fi(X'YI'Y2''"'YN'Y_'Y_'""Y_)' i=l'2'''''N
In these equations, primes indicate dlfferen_iation with respect to the

independent variable X. The initial conditions are:

YI(Xo) = (YI)o

Y2(Xo) - (Y2)o

YN(Xo) = (YN)o

Y_(Xo) = (Y_)o

Y2(Xo) = (Y2)o

YN(Xo) = (YN)o

Both forward and backward starting procedures are provided

Usage
This subroutine is entered by use of the statement

CALL COWELL(X,T,DERIV, H,M,N)

where

X is the independent variable

T is a two-dimensional array that contains values of

Y., Y_, and Y'] (see table below). T must be dimensioned

(_5,N) in theluser's calling program

DERIV is the name of a subroutine, supplied by the user, that

computes the second " " " " "derlvatlves YI' Yg'''''Yw' and stores
them in T(3,1), T(3,2),...T(3,N). DERTV has _rguments X,T.

H is the interval in X over which integration is to take

place

M is a special code where

M = -I backward starter

M = 0 forward starter

M_ I indicates that integration is to be performed
from X to X+MH.

N is the number of differential equations in the system.

Note that for M=-I or 0, only a setup function is performed• The subroutine

must be called using one of the two starting procedures before integration

can be performed. After each call where integration is specified (M>I),

subsequent integration can be carried out without reinitiating a starting

procedure. If, however, the interval size H is to be changed, a new

start must be made.

The array T is loaded as follows:

_(1,1) - Y1

T(1,2) - Y2

T(1,N) - Y_

T(2,1) - Y1
!

T(2,2) - Y2

!

T(2,N) - YN

TO,l) - Y_-
II

T(3,2) ffiY2

II

T(3,N) = YN

The user places

initial values

here prior to a

starter entry.

The user's subroutine

DERIV places second

derivatives here

If it is desired to examine the differences _f_, _2fl,... _77f after
any integration step, they may be found in cell_ T(4,1), T(5,1)__..._ T(10,1),

where I ffiI, 2, N.

The user must name his derivative subroutine (called DERIV herein) in an external

statement, and the array T must be explicitly dimensioned T(15,n), where n - N

Method

A sixth order Cowell second sum predictor-corrector method is used for continued

integration, and an iterated sixth order Co_ell second sum method is used for

the starters (see reference i).
6

'* =A +HYn+l n

k=O

The predictors are given by the equations

M. 19k+ I _Tkfn

6

+ H2 _ _--l,k+2

k-O

kf n

(i)

An+ 1 -A +H fn n+l

Bn+ 1 " _ +Hn An+ I

and the correctors by

w ,* 7 *
Yn+l " Yn+l + h__l,7 _7 fn+l

• H2 7fn+lYn+l " Yn+l + 0---1,8

where _i,J' _i,j are constants.

(2)

After Yn+l and Y'

dffferences_ i

are computed, the function f is again computed and the
n+l

are corrected.

The backward starter goes through the following, eight times:

Page 2

p - I(i) 6

- fY'.p A0 + H Y6,p,m -m

m=0

6

Lp " BO " (P+1)_O + K_
m_O

(_F'6,p,m f-m

f " f Lp, Y'p)"P (X.p,

A0 = Y0 " H

6

m=O

f
Y6,0,m -m

(3)

B0 = Y0 + HA0 - H2 _-6,0,m

n_0

f
-m

Initial values are given _/

" ' + I Hf 0A0 YO 2

B0 " Y0 + _Pf_ + 52 H2 fo

(4)

l_a ordinstes Y0_ Y-I Y-6 are then converted to back,_,Jarddifferences,

f0' V2f0 ,''', _6fo"

The equations for the backward starter are converted to those for the forward stsrter

by me,lns of the transformation

II > =H , Y' --_" Y'
-m m

Y-m > Y f _ fm , -m f m

(5)

The resulting ordinates Y0' YI Y6 are then converted to back>,_ard differences

V f6' _2f 66' "''' V f6 _t X-_ + 6H. Extending these differences back to

• _, 7f 6X0 i_ accompllsn_.d by assuming _7 = O

The values of all constants may be found in the previously mentioned NASA TN

(reference I).

Page 3

References

I. Mercman, Wm. A.: Self-starting Nulti-step Methods for the Numerlcal

Integration of Ordinary Differential Equations. NASA TN D 2936, 1965.

Page 4

m

Identification

AL CROT, Solution of System of Linear Algebraic Equations Using the Method of
Crout

FORTRAN IV

Written by V. L. Sorensen

Purpose

This subroutine is used to solve the matrix equation AX = B, where A is a

square coefficient matrix and B is a matrix of constant vectors. The

matrix B may consist of several constant vectors.

The subroutine is entered by use of the statement

CALL CROUT(A,B,N,M, IERR)

where

A

B

N

M

IERR

is the array that contains the coefficient matrix

is the array that contains the constant column vectors upon entry,

and the solution vectors upon return

is the order of the coefficient matrix

is the number of constant vectors

is an error return such that

IERR = O, normal return

IERR = i, the coefficient matrix is singular

The arrays A and B may be either one or two-dimensional. If they are

defined as one-dimensional arrays, then A must be dimensioned at least Na

and B at least M , N in the calling program. If A and B are to be two-

dimensional arrays, then they must be dimensioned exactly N x N and N x M,

respectively, in the calling program. The manner in which the elements of

the matrices are to be stored in A and B is illustrated in the example below.

x + 3.0y + 6.0z = lO.O, 2.0

2.0x + 4.0y + 10.Oz = 20.0, 1.0

6.0x + 9.0y + 7.0z = 13.0, 3.0

Example

-i-

If A and B are two-dimensional arrays 3 then

and

If A and B

and

A(I,I) : 1.0

A(2,1) = 2.0

A(3,1) = 6.0

A(1,2) = 3.0

A(2,2) : 4.O

A(3,2) : 9.0

A(I,3) : 6.0

A(2,3) = lO.O

A(3,3) : 7.O

B(I,I) = i0.0

B(2,1): 2o.o

B(3,1) = 13.0 B(3,2) = 3.0

are one-dimensional arrays, then

A(4) = 3.0

A()) : 4.0

A(6): 9.0

B(1) = i0.0

B(2) = 2o.o

B(3) = 13.0

A(7) : 6.0

A(8) = 10.0

A(9) = 7.0

A(1) : 1.0

A(2) = 2.0

A(3) : 6.O

B(4) : 2.o

B(5) = 1.0

B(6) : 3.0

The quantities N and M are 3 and 2, respectively.

Method

The method of Crout (see reference l) is used here.

references 2 and 3 are employed in the programming.

References

1.

.

.

Algorithms described in

Nielsen, K.L.: Methods in Numerical Analysis. The Macmillan Co.,

New York, 19_6, pp. 181-188.

Thacher, Henry C., Jr.: Crout With Pivoting II, Algorithm 43. Communi-

cations of the ACM, vol. 4, no. 6, April 1961, pp. 176-177.

Forsythe, George E.: Crout With Pivoting, Algorithm 16. Communications

of the ACM, vol. 3, no. 9, Sept. 1960, pp. 507.

-Z-

_ I w

Identification

AL CVRT, Subroutine to Convert Data in one Format into Another Format

FORI_AN IV

Written by B. R. Briggs and Joanna L. Phifer

Purpose

This subroutine is used to convert data in a given format into another

format. It is useful for processing packed data, and for converting

floating point and integer numbers into Hollerith format for use by

such plot labelling subroutines as AL PALP.

Usage

The calling statement is

CALL CVRT (DATA1, NI, F_rl, DATA2, N2, FMT2)

where

DATAI

NI

FP_I

DATA2

N2

FMT2

is the name of the array that contains the original data

is the number of words in array DATA1

is the name of the array that contains the format of

the original data

is the name of the array that contains the converted data

is the number_f words in the array _ATA2

is the name of the array that contains the format for

converting the original data

Note: Formats FMTI and FMT2 may be entered as Hollerith strings

in the calling sequence, if desired.

Restriction

The formats FMrl and FMT2 can treat a maximum of 132 BCD characters (22 fully

packed words).

Example s

Example 1. To unpack a binary word• (012 to 314)

DIMENSION IDATA(3), FMTI(1), FMT2(1)

DATA WORD/0763102521166/,

1
2 FMT2(1)/SH(314)/

CALL CVRT (WORD, l,FM_l, IDATA, 3, FMT2)

Example 2. To pack a BCD word• (Integer to Hollerith,

D]3KENSION INT(6), FM_3(1), FMT4(1)

DATA (INT(I), I:i,6)/7,6, 3,6, 5,0/,

1 F_3 (I)/5H(6II)/,

2
CALL CVRT (INT, 6,FM_3, BCD, i, FMT4)

6Ii to A6)

Example 3. To prepare a title• (Real to Hollerith)

DIMENSION HEAD(3), F_5(3), F_6(1)

DATA RADIUS/6375. 553/,

1 (F_5(I), I:l, 3)/17H(THRADIUS:, FI0.3)/,

2 FMT6(I)/5H(3A6)/

CALL CVRT (RADIUS, i, FMT5, HEAD, 3,FMT6)

CALL VTITLE (HEAD, 3,O)

The above statement illustrates one use for this

prepared title. VTITLE is an entry point to
subroutine AL PAGE. In FORTRAN IV a similar

procedure can be used to prepare variable labels

to be printed on plots by subroutine AL PALP.

t

D 2m

Example 4. To read data as specified by code letters or num_erg

on the card (also Hollerith to both Integer mn_ Re_l

by equivalencing "read" array)

DIMENSION IDATA(35), X(8), FMrT(1), F_(1), F_(2_,TITLE(12)

mUXV_CE (_x,x(1))
D_A _7(1)/6E(12A6)/,

1 F_ (1)/6H(3512)/,
2 (_a_(1),1:i,2)/l_(_l,7E10.8)/
DO 750 NCARD=I, NCARDS

(5,7o5) i,Trns
705 FORMAT (Ii, 1].A6,AS)

GO TO (710,720,730), I

71o CALL VTITLE (TITLE,_,0)

GO TO 750

72o CALL CW_ (_LE, 12,FM_7,_A_A, 35,_8)

GO TO 75O
730 CALL CVET (TITLE,12,FMT7,X,8,FM29)

79o CONTINUE
760

References

AL PAGE, Ames FORTRAN IV Library Subroutine

AL PALP, Ames FOl_l_JIN IV Library Subroutine

N2

Identification

AL DDMP (DDUMP), Dumping

FORTRAN IV, MAP-coded

Written by V. L. Sorensen

Purpose

This subroutine is designed to provide labelled dynamic dumping at execution

time of single-precision, double-preclslon, and complex variables, and
Hollerith information.

usage
The entry is by use of the statement

where

N
VARLST

list

n CALL DDUMP(N, VARLST, list)

is the statement number n

is the name of an array into which labels of variables and arrays

are read by use of a DATA statement

is the list of names of variables and arrays to be dumped

As implied above, the CALL DDUMP statement has associated with it a DATA

statement, by means of which the variable and array labels, and variable
type, are loaded into the array VARLST. The label for a single variable

is simply the name of the variable. For an array, on the other hand, the

label consists of the array name followed by the limits, in parentheses,
of the elements to be dumped from the array. Individual labels are sepa-

rated, in the DATA..statement, by commas. A string of labels preceded by
the characters _C$ will be interpreted as belonging to a list of complex

string of labels preceded by the characters $_ will bevariables. A

interpreted as belonging to a list of double-preclsion variables. A string

of characters preceded by the symbols H will be interpreted as belonging
to a Hollerith list. The labels for a real single-precision (floating-point

or inte_ger) list should be preceded by the characters $$ if other types of

labels appear ahead of it in the DATA statement. If no other types of

variables are labelled ahead of the slngle-precision variables, or if only
single-precision variables are being dumped, the symbol $$ may be deleted.

The entire string of characters that comprise the labels is enclosed by

parentheses, and the H-format is used to load it into the array VARLST.

Embedded blanks are ignored by the subroutine but should be included in the
Hollerith count for the DATA statement. Labels with more than six charac-

ters will be truncated.

m

N2

Discussion

Single variables are printed in sequence, each variable being preceded by

its label. Single-preclslon real (integer and floatlng-polnt) variables

in arrays are printed 7 values per llne, and double-preclslon,_complex

variables in arrays appear 4 values per llne, preceded by the array r_me

and the indices of the elements on that llne. The format with which a

variable is printed is chosen according to the following rules:

1. If a slngle-precision variable looks llke a non-normallzed

floatlng-polnt number, or if the exponent is zero, the variable

is presumed to be an Integ_ and is printed out using the I-
format. Otherwise E-format is used.

2. A complex variable is always printed in the E-format, the real

part first, followed by a comma, and then the imaginary part.

3. A double-precision variable is printed using the D-format and

16 decimal places.

4. A Hollerith variable is printed using the A-format.

Multidimensional arrays are treated as though they were one-dimenslonal,

and elements of a multidimensional array that are to be dumped must be

located by the following rule:

The element (I,J,K) of an array A, which is of dimension (L,M,N),

is found as the NN-th element of a one-dimensional array by the
use of the formula

=I+ +

As an example, suppose that it is desired to dump elements (2,3,4) through

(6,7,8) of an array that has been dimensioned (i0,i0,i0). Use of the above

formula leads to the result that this range of elements is equivalent to

the range (322-766) of the corresponding one-dimensional array.

Restriction

There is a limit of lO00 lines of DDUMP output. If more than this limit

is requested, the portion beyond lO00 lines is automatically deleted.

Examples

The first example illustrates the coding for dumping slngle-precision

variables A,B, and K, and elements 5 through 25 of slngle-preclslon array D.

DIMENSION VARLST (3)

DATA(VARLST(1),I = 1,3)/15H(A,B,K,D(5-25))/

n CALL DDUMP(N,VARLST,A,B,K,D)

Note that the symbol _ is not needed, since only single-precision

variables are being dumped. The items in the CALL list correspond one-to-

one with the labels in the DATA statement.

-Z-

N2

The next example illustrates all of the features of the dumping subroutine.

100

DOUBLE PRECISION DOUB,DOUBA

COMPLEX COMP, COMPA
DI ENSZONVARnST(17),REZ (20),I A(5),HOLm(5),

1 COMPA(IO) ,DOUBA(5)

DATA (VARLST (I) ,I-i ,17)/I02H(RFAL,RE AIA(2-10) ,INT,

1 INTA(5)_H_H#L, H_LIA(I-2),$C_CCMP,CSMPA(I-10),_E

_ALL DDUMP (i00,VARLST, RFAL, R_IA, INT, INTA,

1 HOLL,HOLIA,COMP,COMPA,REAL I,DOUB,DOUBA,ETC)

Notice that single variables and arrays of all types are dumped. Observe
also that in the first continuation card of the DATA statement a comma

has not been placed ahead of the $_ symbol, but one does, in fact, appear

ahead of the symbol C. This merely illustrates that the comma is optional
here. Note the blanks, also.

Notes

The programmner should be aware that unused cells are not set to zero in
FORTRAN IV but are loaded with a particular code number that is constant

within a given program. Cells containing this code number are not dumped,
but the words NO VAL are printed in place of the number.

The subroutine AL COUN, discussed elsewhere has been prepared

for use with AL DDMP

D2

Identification

AL DE6F (DE6FN), Cowell Integration of 2nd Order Differential Equations

F_RTRAN IV, MAP-Coded Subroutine

Ames Modification of SHARE Library Routine RW DE6F

Purpose

The purpose of this subroutine is to obtain a numerical solution

of the system of N (N_l) ordinary second-order differential equations

(1)

, ,y'_'= fl(x,yl,y2, "-, YN,yl,Y2, "",

Y_ = f2(x'YI'Y2'"'" Y_'Y_'Y' '"' Y_)

y_ = (x, Yl' Y2' "" ' "'" '

or the system

Y_'= fl(x,Yr Y2,"'" YN)

(2)

y_ = fN(x, Yr Y2' "'" YN)'

with first derivatives missing,

where x is the independent variable, and with the initial conditions

(3)

ryl(xo) = (Yl)o

(Xo) : (Y)o

yi(Xo)= (yl)o

o

: %)o

-I-

D2

where

dyj y. d2yj
Y_ - _

dx ,
(J = i, P, ..., N).

The solutions are obtained for discrete values of the in_ependemt

variable x at specified intervals, that is, from xi to xi+ 1 (i = O, l,
2, ...). Each interval h is given by

h = xi+ I - x i .

Usag____e

The subroutine has twelve entries. The first two must be used with

all problems, but the other ten may be used optionally.

i. Set-Up Entry

When this entry is used the subroutine does all necessary

initialization to start the integration at x = x • It then

enters the derivative subroutine, which is suppl_ed by the

user, to obtain yS(Xo) (J = I, 2, ..., N) and returns control
to the main program.

This entry must be used whenever it becomes necessary to

restart the integration at some intermediate point x = x I such

as a point of discontinuity. In this case xo is set to x I.
The set-up entry is also used whenever the entry for a running

start (see entry number 3 below) is used.

The CALL statement, with normal conventions for integer and

floating-polnt number designations, is:

CALL DE6FN (IDR, lOP, T, N, DERIV, JN, KR, SD, HMIN, HMAX, YMIN),

where

IDR indicates whether first derivatives are present or

not (i.e., whether system (1) or (2) is to be solved)

as follows:

IDR = +l if first derivatives are present.

I_R = -1 if first derivatives are not present.

lOP indicates the desired mode of operation (See Method).

IOP = +l if variable step-size mode is to be used.

IOP = -1 if fixed step-slze mode is to be used.

T is an array containing 30N +3 cells and is reserved

by the user.

D2

N is the numberof differential equations in system
(1)or (2).

DERIV is the name of a FORTRAN subroutine (supplied by

the user) that evaluates the second derivatives

y'_ (J = l, 2, ..., N) and stores them in T(4 + 9_N)
t_roughT(4 + 3N-l). The name of the subroutine

DERIVmust appear on an EXTERNAL card in the calling

program. This subroutine has no arguments.

JN (4 N) is the number of equations (in System (i) or

(2)) that should be used when DE6FN is testing for a

change in interval size (See Method). If JN = 0 the

routine sets it to JN = N.

KR is the ratio of a Cowell step to a Runge-Kutta step

and is used in starting the integration (See Method).
If KR = 0 the routine sets it to KR = 4.

SD is equivalent to the number of significant digits

required at each integration step (See Method). If

SD = 0 the routine sets it to SD = 1.OE-9.

HMIN

HMAX

is the minimum value of _h_ below which the subroutine

will not decrease lhl (S_e'Method).

is the maximum value of lhl above which the subroutine

will not increase lhl (See'Method). If HMAX = 0 the _
routine sets it to HMAX = 1.OE+18.

YMIN is the minimum value of y to use in controlling changes

of interval size. If YMIN = 0 the routine sets

YMIN = 1.O (See Method).

If the fixed mode of operation (i.e., if IOP = -1) is used, then SD, HMIN,

HMAX and YMIN are arbitrary, but the user should set JN = 1 for maximum

efficiency.

The array T and the integer N should appear in COMMON since they are

referred to in both the calling program and the subroutine that evaluates

the second derivatives. Any other parameters needed in the derivative

subroutine should be transmitted through COMMON.

-3°

D2

The array T contains the following information:

T(2) = x,

T(3)= h,
(4)= y(x)

(4+N-l)= y(x)

(4+) = yi(x)
(4+ml)= y(x)

T(4+2N) = y_'(x)
f_

(4++i)= y2(x)

o

T(4+3N-I) = yN(x)

the independent variable

the value of the interval size

values of the dependent

variables

values of the first derivatives

values of the second derivatives

which are supplied by the sub-

routine DERIV

Prior to the Set-Up entry the user must set T(2) : x , T(3) = h, T(_)

through T(4+N-1) to y.(x^), and, if needed, T(4+N) through T(4+_N-1)

to y](Xo) (J = l, 2,O..u., N). T(1) is not available to the user•

• Integration Entry

This entry is used to integrate one step (i.e., from x i to

Xi+l). The CALL statement for this entry is:

CALL DE6FPI (ACCUM).

When control is returned to the main program the solutions

(y_) .,(y) + , ..., (YN)i+ 1 will be located in T(4) through.% i+±, 2 i i

T(4+N-I), the first derivatives (Y{)i+l' (Y2)i+l' "'"

(YN)i+l' if required, will be located in T(4+N) through T(4+2N-1),

and the second derivatives will be in T(4+P_N) through T(4+SN-1),

where i = 0, l, 2, ((YJ)i_ yj(xi))" xi+ 1 will be located
in T(2).

-4.-

D2

The variable ACCUM indicates whether the integration

step Just performed was a Cowell integration or a

Runge-Kutta integration. This information is needed

only when a running change of coordinates is made

(See Method and entry number 4)

ACCUM_ 0 if a Cowell step was Just performed

ACCUM _" 0 if a Runge-Kutta step was Just performed

3. Entry for a Running Start

This entry is used when the user has available starting

values for the solutions y_ and, if needed, their

derivatives y_ (J=l, 2, .._, N), or good approximations

to them, for _ight consecutive values of the independant

variable for a fixed step-size h. With this entry, the

above values will be used in place of the starting pro-

cedure_: that is incorporated in the subroutine.

To use this entry, the user must first initialize the

T array as described under the Set-Up entry. Store

x = xo + 7h in T(2), where x_ is the first point in the

sequence of eight points. T_e values of Yl and y_ must
correspond to this value of x. Next, execute the Set-Up

entry. Then, store eight consecutive sets of y_ for a
fixed value of h starting at cell T(4 + llN) and eight

consecutive sets of yl, if needed, for the same fixed

value of h (begin witE values that correspond to x)

starting at cell T(4 + 3N) and execute the following CALL

statement one time:

CALL DE6FP2

This causes the subroutine to compute the difference table,

integrate over one Cowell step (see Method), and advance x

from x_ + 7h to xo + 8h. Continue with the Integration

Entry _entry number 2) to integrate further.

4. Entry for Running Change of Coordinates

Sometimes the user may want to alter or adjust the units on

the results beginning at some intermediate point of the

integration. At the same time, he may also want to change

the derivative routine and/or the units on x and h.

.j-.

D2

The user must observe the following procedure In order

to make the above changes:

After a Cowell integration step (see entry number 2),

initialize the beginning of a change of coordinates by

executing the CALL statement

DE6 Z

where ANZ is any non-zero number. Continue to use the

Integration Entry (entry number 2) and, starting with the

present values, begin to store eight consecutive sets of the

solutions y1(x) beginning at cell T(4 + llN) and, if needed,

eight conse_utlve sets of the derivatives y l(x) beginning

at cell T(4 + 3N) (J = l, 2, ..., N). When"the eighth set

of values has been stored, any necessary adjustment can be

made on the data. The integration may then be continued by

using the Integration Entry (entry number 2).

If the subroutine is operating in the variable step-slze

mode and h is to be altered, then entry number 7 (_

from Variable Mode to Fixed Mode entry) followed by entry

number 5 (Change of Step-Size entry) must be used before

initializing a change of coordinates (i.e., before CALL DE6FNZ

(ANZ) statement). After the change of coordinates has been

completed, the variable mode may be restored at anytime, if

desired, by using entry number 8 (Change from FixedMode to

Variable Mode entry).

5. Entry for Change of Step-Size

o

Any time the step-slze h is to be changed, use the CALL

statement.

CALL DE6FP3(H),

where H is the new value of the step-slze. A Runge-Kutta
integration step is performed with _his entry.

Entry for Change of Step-Size for A Final Integration

This entry is used whenever the integration is to be ended

at a specific value of x and the value of h is such that this

cannot be done with a normal integration entry (entry number 2).

Set T(3) to the required value of h and execute the CALL statement

CALL DE6FP4.

D2

This causes one Runge-Kutta integration step to be performed.

This entry may also be used at some intermediate value of x

if entry number _ is used immediately afterwards.

7. Entr_ for Change from Variable Mode to Fixed Mode

CALL DE6FNG

8. Entry for Change from Fixed Mode to Variable Mode

CALL DE6FPS

9. Entry for Change of hmi n

CALL DE6FMN (HMIN),

where HMIN is the new value of hmin.

i0. Entry f_r Change of hmax

CALLDE6FMA(max),

where RMAX is the new value of hmax.

ii. Entry for Change of Ymin

CALL DE6FCM(YMIN),

where YMIN is the new value of Ymin.

12. Entry for Change of KR

After any Cowell integration step, use

CALL DE6FCH(KR,R),

where R is the floating-point value of KR (see Set-Up

Entr____!yfor definition of KR).

-9-

D2

Notation

For simplicity of notation, let Y(X), Y' (X) and F(X,Y,Y') be

N-dimensioned vectors_ the elements of which are YI' Y2' """' YN'

y_, y_, ..., y_ and fl' f2' "'" fN respectively. Thus,

yN) i.. Y'(X)= (y, y_,...,Y(X)= (Yl'Y2' "' '

F(X, Y, Y') = (fl' f2' "'" fN)" The initial conditions can

be designated as Yo and Yo; i.e.,

Yo: (yl(xo)'Y2(_o)'"'" YN(Xo)): Y(Xo)and

Yo : (Yl (Xo)' Y2 (Xo)' "'" YN(Xo)) : Y'(Xo)" The system (i)

and initial conditions (3) may then be written

Y"= F(X, Y, Y')

(4) Y(Xo)=Yo

Y'(Xo): Yo

and the system (2) with initial conditions may be written

Y" : F(x, Y)

(5) Y(Xo) : Yo

Y'(Xo) = y'O

The symbol Yj is taken to mean a solution of (4) or (5) that

corresponds to some value xj of the independent variable xj

i.e., Yj = Y(xj). Similarly,

y]:y'(xj)

Y" - Fj = F(xj, Yj, Y')j or

Fj = F(xj, Yj) if first derivatives are missing (J = 0,1,2,...).

The interval size h (or step-size, or step) is given by

h = xj+ 1 - xj

D2

Method

The subroutine uses a sixth order Cowell first and second sum

predlctor-corrector method to integrate at each step. The classical

fourth-order Runge-Kutta method is used to obtain starting values•

Either of two standard modes of operation may be used in the

integration; a fixed-step mode or a varlable-step mode. The Cowell

formulas are given below:

A. Predictor Formulas 6

+ J-i

k=o

6

•- _-- kFj_ I(7) PY_ = hsl + h MkVJ
k=o

where _k is the kth backward difference operator, N and M are

constants-- (Constant List), p is used to indicate "predicted value",

SI and S II _ t-_ "fi_ and second sums and are defined in

equations (8) and (9) (J = 7,8,...).

3

(8) S_I = YJ-I - _ C2kV_kFj_l

h 2 k=o

6

(9) S_ = YJ-I - _ DkVkFj_I

h k=o

where C and D are constants (J = 7,8,...).

Note: Backward differences are defined by

VFj = Fj - Fj_I

V%j :V(VFj)--VFj-VVj_l

VmFj:v Tm-lFj)

-9-

I

D2

B. Corrector Formulas

6

(io) cYj= II + h2-j+l Z kp,j
k=o

k=o

where B and G are constants and c indicates "corrected value"

(j: 7,8,...).

C. Integration Procedure

The fourth-order Runge-Kutta method is used to calculate
! oo

Yl' Y2' "'" Y6' YI' Y2' ., Y_ (that is, the first six entries

for integration (entry number 2 under Usage) use Runge-Kutta) with

a step-size of h/KR. The integer KR al-_Runge-Kutta to operate

at a smaller step than the Cowell formulas. If ER Is unspecified

in the Set-Up Entr_ it is set to KR = 4. After each integration

step the derivative subroutine DERIV Is entered to obtain

F l, .-.3 F6.

After Y6' Y6 and F 6 have been calculated a difference table is

constructed and stored. When the seventh integration step is

called for (i.e., seventh entry), the routine first calculates

S_ I and S_. It then computes pY7,pY_ and enters DERIV for pF 7.

It then calculates cY7, cY_ and enters DERIV for F7 all of which

It takes as the final values for the integration _thus; Y7 = cY7 '

y_ = cY_ and F 7 = cF7). The difference table is adjusted to account

for the new integration and control is returned to the calling

program. The steps taken for Yj, Yj and Fj (J = 8,9,...), are the

same as those taken for Y7' Y7 and F7 except when the variable

step-size mode Is in operation.

D. Variable Step-Size Mode of Operation

In this mode of operation the difference table Is constructed on

the sixth entry, as before, but on the seventh entry h is tested

-10-

D2

before proceeding to a Cowell step (equations (6) through (ii)).

Only the first JN ('=N) equations are used in testing h _ if

JN is unspecified in the Set-Up Entry the routine sets it to

JN=N. If JN is other than N, the user should list the equations

in order of decreasing importance in order to take full advantage

of the variable step-size mode.

The step-size h is halved, left as it is, or doubled in accordance

with the following inequalities:

if V _ 103(SD) h is halved;

h 2

if lo-l(sD) 103(SD) h is left as it is;_ V_ , ,

h 2 h 2

ifv i°-i sD,''andw l°-l sD,'' h isdoubled;
)

-- h2 -- h 2

where SD is equivalent to the number of decimal places to be retained

at each integration step (SD= 1.OE-9 if it is unspecified in the

Set-Up Entry),

V =max

W = _Kx

V 5Fj I
im (Yj,Yin)

V 6Fj

max(Yj,Yml n)

(J = 6,7,8,...),

where Ymln (" YMIN in Set-Up Entry) is the minimum value to use

in calculating V and W and avoids division by unnecessarily small

number (Ymln = 1.O if unspecified in Set-Up Entry), and where

maximums are taken with respect to the first JN equations in

system (1) or (2).

If h is left as it is, the routine proceeds to integrate using

the Cowell equations. Otherwise, h is halved or doubled and

Runge-Kutta integration takes place for six more entries and the

above procedure is repeated. If hmi n (-HMIN) and hmax (-HMAX) are

specifled, then h will be altered so that it is always _min--___--_max" 12

If they are unspecified, them they are set to hmi n = 0.0 and hma x = lO _v.

-ll "

D2

NOTE: If it is indicated in the Set-Up Entry that first derivatives

are not present in the differential equations, them amy
equation in DE6FN that calculates or uses first derivatives

will NOT be computed. If the user wants the first derivatives

made available, then it should be specified in the Set-Up Entry

that they are present in the differential equations regardless

of whether system (1) or (2) is being solved.

E. Running Start

When a running start is used to begin the integration, the user

Yi' '"'
must supply the values Y0' Yl' "'" YT'yjxo + 7h, where h is fixed. The values and

Yj
(J 0,i,. @ @, 7)

must correspond to xo + Jh.

After these values have been supplied, and entry number three has

been executed, the subroutine bypasses the Runge-Kutta starting

procedure, constructs the difference table, and performs one Cowell

integration step. Thereafter, integration proceeds as described

above. A running start may be used at any point xi, where xI

replaces Xo, by using the above procedure.

F. Running Change of Coordinates

When the user has accurate information available about the behavior

of the solutions of the differential equations, a running change of

coordinates may be used to adjust the data to conform to this behavior.

If it is desired to change the derivative subroutine or the units

on any of the data (i.e., on X, h, Y_ and/or Y3), then a running
change of coordinates must be made. u

The procedure is nearly the same as in a running start (see entry

number 4 under Usage) except that the user must save eight con-

secutive sets of values of Yj and Y_while operating under the
fixed step-size mode. After the eight sets have been saved, any

necessary adjustment may be made. Integration then continues

normally. If the program was operating in the variable step-size

mode prior to a change of coordinates, this mode will have to be

restored, if desired, before continuing the integration.

G. Other Provisions

In addition to above procedures, the subroutine has provisions for

a. changing the step-slze h at any time (the Runge-Kutta

procedure is used for six points and the difference table

is adjusted to the new value of h any time h is changed),

D2

be

Ce

changing the step-slze for a final integration (to make

the integration end at a specific value of x), or to

integrate to a specific value of x (see entry number 6

under Usage),

changing from the variable step-size mode to the f_ed

step-slze mode and vice-versa,

d. and for changing hmin, hmax, Ymin and KR.

13°

H.

D2

Constant s

The following constants are used in the Cowell eqtmtlons

(equations (6) - (ii)) :

No = 0.0833333333

N_ = 0.0833333333

N2 = 0.0791666667

N3 = 0.075

N4= 0.07134588948

N5 = 0.0620436508

N6 = 0.O6549575617

Mo= 0.5

Mz = 0.416666666

= o.375

M3 = 0.348611111

M4 = 0.329861111

M5 --0.315591931

M6 = 0.30422453 7

Co = 0.0833333333

C = - 0.00416666667
2

C4 = 0.0005125661376

C6 = 0.00007964065256

DO = - 0.5

D = - 0.0833333333
i

D2 = 0.041666667

D3 = 0.0152777778

D4 = -0.00768888889

D5 = -0.00315806883

D6 = 0.00157903443

Bo = 0.08333333333

B = 0.0
l

B = 0.004166666667
2

B3 = 0.004166666667

B4 = -0.003654100529

B5 = -0.003141534392

B6 = -0.002708608907

G = 0.5
O

G = 0.08333333333
i

G2 = 0.04166666667

G3 = -0.O2638888889

G4 = -0.01875

G5 = -0.O1426917989

G6 = 0.08333333333

-14-

D4

Identification

ALDIF3, Smooth and Differentiate Unequally Spaced Data

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine CL SMD3

Purpose

The purpose of this subroutine is to smooth N(N _ 7) data points,

which may be unequally spaced, by the method of least squares.
Options to differentiate and to minimize random errors (i.e., to

discard "wild" points) are provided.

Usage

The subroutine ALDIF3 is entered by use of the CALL statement

CALL DIF3 (X,Y,IT,N,M, IS,J)

where

X

Y

IT

N

M

IS

is the array of abscissas (dimension N)

is the array of ordinates (dimension N)

is an option word:

IT = 0 if only the smoothing operation is to be
carried out

IT = 1 if wild points are to be discarded,

followed by smoothing

IT = 2 if smoothing is to be followed by
differentiation

IT = 3 if wild l_ints are to be discarded,

followed by smoothing, followed by
differentiation

is the number of data points (_7)

is the number of times smoothing is to be done

is an option word such that if IS = _ the first point

is unaltered by smoothing, and if IS = 0, the first

point is permitted to be changed by the smoothing

operation

-l-

Usage (continued)

J is an error indicator

J=0 for normal return

if N _ 7, or if an overflow or under-

flow has occurred

The smoothed, or smoothed and dlfferentiate_ results will be

found in the array Y upon return from AL DIF3.

Method

Wild points are isolated by the following procedure. A quadratic

curve is fitted by the method of least squares to six points.

Except for the end points, the six points consist of the three

immediately premeding and the three immediately following the

point under consideration. For the first three points, the quadratic

is fitted through the first seven points, exclusive of the one

being considered, and for the last three points it is fitted

through the last seven point% exclusive of the point under consider-

ation. A point is considered to be wild if it does not lie within

three standard deviations of this quadratic. Wild points are re-

placed by the corresponding points which lie on the curve.

A data point is smoothed by fitting a quadratic through seven points,

namely the point under consideration and the three on either side

of it. The point on the curve that corresponds to the point being

smoothed is taken to be the smoothed value. The first and last three

points are smoothed by noncentral formulas, similar to those used

in the wild point screening described above• Derivatives of the

smoothed data are obtained by use of a simple three-polnt formula_

where noncentral formulas are employed for the first point and the

last point.

-Z-

C2

Identification

AL DPMU, Real or Complex Roots of a Polynomial with Real Coefficients

FORTRAN IV

Ames Modification of SHARE Library Routine ML HPRS

See writeup for Ames FORTRAN IV Library Routine ML HPRS.

ZO

Identification

AL EDFL (ENDFIL), Continue Computation After All Input Data Has Been

Read

FORTRAN IV

Purpose

AL EDFL is a subroutine on the Ames FORTRAN library tape,

to which control is passed upon detection of the fact that a given

program in execution has read and performed calculations upon all

of the given input data. If the programmer does nothing, control

is transferred to EXIT, and the job is terminated. If the programmer

wishes to continue computation after it has been determined that all

input data has been read, he supplies a subroutine, which must

be named ENDFIL, to replace the program named ENDFIL that is on the

library tape.

usage

The programmer provides a subroutine named ENDFIL, which performs

the desired computation. This subroutine may not have any READ

statements, and it must terminate by one of the statements•

CALL EXIT

or

CALL ERROR (I, O)

Z0

Identification

AL EROR (ERROR), Indication of Location of an Error

FORTRAN IV, MAP-coded

Written by V. L. Sorensen

Purpose

This subroutine is used to print out the program name and the

external formula number at which an error has been detected by

the programmer.

This program is entered by use of the statement

where

I

CALL ERROR(I,J)

is the external formula number, supplied by the

programmer_ at which the error is detected.

J is an option word:

J = 0 execution is terminated following the

print-out of the error message

J = 1 execution continues following the print-out

of the error message

Required Subroutines

This subroutine uses the progran_ EXIT, which is on the library tape.

ZO

Identification

AL FPT ('FPT.), Standard Treatment of Overflow and Underflow

FORTRAN IV, MAP-coded

Standard IBM 7094 Procedure, Modified by V. L. Sorensen

Purpose

This subroutine provides a standard procedure for the treatment

of floating-point arithmetic overflows and underflows. An option

is provided which allows the programmer to bypass the standard

procedure in order to insert his own routines for testing for
overflows.

Standard Treatment of Overflow and Underflow

If the result of a floating-point arithmetic operation is smaller

than 10-38 (underflow), this result is replaced by a normal zero

and computation continues. If the result of a floating-point

arithmetic operation is greater than 10+38 (overflow), then the

message

is printed, and execution is terminated. Here, L is the location

of the command that produced the overflow and AC and M_ rep_esen_

registers on the computer. The part of the message in square brackets

is optional.

In addition to the overflow messages, this routine also is entered

when an illegal address is used in conjunction with the double-

precision hardware on the computer. The most significant part of

a double-precision number and the real part of a complex number

must be stored in even locations. The compiler and the loader normally

handle this correctly. However in the event of difficulty the message

ADDRESS AT L ODD

is printed and execution is terminated. L is the location at which

the error occurs.

Special Usa_,e

If the programmer desires to take special action in the case of

overflows, the above standard procedure may be disabled by use of
the statement

CALL FXFPY

Overflows which occur following the execution of the above CALL may

be detected by use of the statement

where

OV (J)

J= 2

= i

and then appropriate action can be taken.

CALL REFPT

if no overflow has occurred

if overflow has occurred

The statement

will cancel the effect of the previous CALL FXFPT, and overflows
will again be treated in the standard way by the subroutine FPT •

D1

Identification

AL GAUS (GAUSS), Integration by the Gauss Quadrature Method (I0 point)

FORTRAN_IV, MAP-coded

Ames Modification of SHARE Library Routine GL GAU2

Purpose

This subroutine is used to compute the integral of a function

F(X) over an interval (A, B).

Usage

The technique for using this subroutine involves a calling

sequence of two or more statements, as shown below.

(1) DUMMY = GAUSS(A,B,N,X)

(2)

(n) DUMMY = F(X)

Here

A is the lower limit of integration

B is the upper limit of integration

N is the number of intervals within the limits

(A,B) over which the i0 point integration procedure

is to be applied

X is the variable of integration

The word "DUMMY", which appears in the first and last statements

only, is used here to symbolize any floatlng-polnt variable

whatever, which may be subscripted if desired. The statements

that appear between thefirst and last may be any FORTRAN state-

ments, but control must eventually pass to the final statement,

which computes the function to be integrated. After the integral

has been calculated, its value will be found in "DUMMY".

Restrictions

The quantities A, B, N, and X may be single or subscripted

variables but may never be expressions or constants.

Method

The integral of F(X) is computed by application of a ten-point

Gaussian quadrature formula over each of N subintervals within

the limits (A, B). Thus, the total integral is the sum of the

N parts into which the problem has been divided.

According to the Gaussianmethod, a set of discrete abscissas

a S , and corresponding weights h_, are determined such that
J

F(X) dX = _ hjF(aj)

j:l

is as exact as possible for fixed n. If it is stipulated that

the result is to be exact if F(X) is a polynomial of degree 2n-l,

then it is found that the aj are roots of the Legendre polynomial
of degree n, and that the weights h. are found by use of a simple

relation. The development of the G_ussian quadrature formula will

not be undertaken here, since it can be seen in many standard

references such as those cited below. The values for aj and h i
have been tabulated in these references for various values of _,

and as has been stated above, the present usage involves a ten-point

(n = i0) scheme.

References

Whittaker, Edmund, and Robinson, G.: The Calculus of Observation.

Blackie and Son Ltd., London, 1946.

Kopal, Zdenek: Numerical Analysis. John Wiley and Sons, Inc.,

1961.

4 2 -

14

Identification

AL INPT Generalized Data Input Subroutine

FORTRAN IV, MAP

General Dynamics

Purpose

This subroutine provides for input of single-precision fixed and floating

point numbers, octal numbers, and Hollerith information. Usage is particularly

convenient inasmuch as no format statements are required, and data may be

loaded in any order irrespective of the order in the calling statement.

Usage

The calling statement is

CAm _PU_ (5mummy, ALPHA, 4_A, BETA,)

In the above, the Hollerith literals represent the external names of variables

or arrays as they should appear on data cards. The other arguments are the

internal names of the variables and arrays as referenced in the source

program. It will become apparent that by using the external names in

addition to the symbolic location names, it is possible to enter data

for a variable on an input card without regard to its relative location

in the calling sequence of the program.

Acceptable Input Data Forms

a) Floating Point
General Form Examples

Any number of decimal digits, with a

decimal point permitted at the beginning,

at the end or between two digits• A

preceding plus or minus sign is optional.

A decimal exponent preceded by E+ or +

or - if negative may follow. If no

decimal point appears, the exponent is

mandatory. The magnitude of the number

must be between the approximate limits

of 10-38 and 1038.

17.
5.0
- .0003

5.0E3 (5.0 x lO 3)

5.0E+3 (5.0 x 103)

5.0E-7 (5.0 x 10 -7

b) Decimal Integers

General Form Example s

Any number of digits. A preceding plus

or minus sign is optional. Numbers

exceeding 235-1 will be treated modulo
235.

3
+l

-28987

c) Octal Integers
General Form

1 to 12 octal digits. A preceding plus

or minus sign is optional. The magnitude

of an octal integer may not exceed

377777777777. Representations less than

12 digits will be right-adjusted.

If the first digit of a 12-digit repre-

sentation is 7, it will be interpreted

as -3. If this 7 is preceded by a sign,

Example s

$5
$-346

$7777777

$+o265
$- 301265_3720

-2-

c) cont'd.
an error exit will occur. Thus

777777777777 is valid, but -777777777777

is not. Octal numbers must be preceded

by a $.

d) Hollerith Information

General Form Example s

Any number of characters, including

blanks. The number of characters is

specified by_itlng nH preceding the

Hollerith information, n is the number

of characters in the block following _.

14HTHIS IS A TEST

6HALPHA

Rules for Preparation of Data Cards

Blanks are ignored except within Hollerith data fields.

Data must be contained within card columns 1 through 72.

It is not necessary that variable names on the data cards appear in the

same ord---eras those in the calling sequence. The routine will search the

list for the name and its core location.

Individual data items are separated by commas.

An equal sign or a comma separates the name of a variable and its first

data item.

A comma separates the end of a data set and the next variable name.

A data input record is terminated by an asterisk (*).

It is not necessary to input a data set for each name in the calling sequence.

Elements of an array may be skipped by writing consecutive commas--i.e., no

data between the commas; or by singly subscripting the array name. Double

subscripting is illegal. Thus, if it is desired to input data into a

three-element vector V, one could write:

V = 2.79,,1.32

No data would be entered into V(2). Whatwas originally there remains there.

Alternatively, the above could be written:

V(1) = 2.79, V(3) = 1.32

Special Feature

The card image is normally written on the system output unit, tape 6,

prior to being processed by the routine. If anN is punched in

column 73, the card will not be listed. If column 73 contains a C,

the card is treated as a comment only; i.e., it is not scanned for data.

If the card contains CE in columns 73-74, the card will be treated as

a comment card, and a page will be ejected.

-3-

Example

If the following call statement appeared in a FORTRAN progrwm,

CALL INPUT (lEA, A, 1EB, B, 1HC, C, 1HD, D, 1HP, P, ll_, R, I_S, S)

the input cards could be punched as follows:

A = 3.14159265, B = $707, C = 1870, ist card

D = i., 2., 3., 4., 5., 6., 7., 8., 9., 2nd card

R(_-_) = 3, R(5) = $74,, 42, 3rd card

P = 22HTHIS IS A CHECKOUT RUNIC 4th card

Note that D must be dimensioned at least 9,

R dimensioned at least 7 and P at least 4.

Also R(1), R(3), R(4), and R(6) are unchanged.

Even though S appears in the CALL statement, it is not necessary

that it appear on one of the input cards. The * on card 4

signifies the end of the data record• This means that the

routine will return control to the calling program.

Restrictions

The following errors will be detected by the subroutine.

A diagnostic message and the card in error will be printed on

the system output unit, tape 6.

1. Name on data card exceeds six characters.

2. Name on data card does not appear in the calling sequence.

3. Punctuation errors•

4. Octal field errors°

5. Decimal or octal data out of range.

This subroutine may not be used for reading double-precision or

complex variables.

D2

Identification

AL INT, Adams-Moulton, Runge-Kutta Integration

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine RW DE2F

Purpose

The purpose of this subroutine is to obtain a numerical solution of

the system of N(N____I) ordinary first-order differential equations

(1)

Y_'= _i(x, Yl,Y2, "", YN)

Y_ = f2(x'YI'Y2' "'" YN)

Y_ = eNCX'Y_'Ya'"'" YN)

with x as the independent variable and with the initial conditions

(2)
il(xo = CYl)o
YN(Xo) = (Y_)o'

dy

and where y_ _ J
dx

(J = i, 2, ..., N).

(Note: The symbol "_" means "is equivalent to".)

Usage

The subroutine has three entries, one for set-up, one to integrate over

an interval h, and one to stop the set-up or integration process if an
error occurs.

A. Set-UpEntr_

When this entry is used, the subroutine does all the necessary

initialization to start integ_atlng at x = x e. It then entars the

derivative routine, which is supplied by the user, to obtain y_(Xo)
(J = l, 2, ..., N) and returns control to the main program.

-i _

D2

Usage (continued)

This entry must be used to restart the integration at any inter-

mediate point x = xI such as a point of discontinuity, a point at
which the user wishes to cha_ge the interval size h or the

parameter K (which is defined below). In these cases xo is replaced

by xI.

The CALL statement, with normal conventions for integer and

floating-point number designations, is:

CALL INT (T,N,K,EU, P,A,HMAX,HMIN, BETA, DERIV),

where

T is an array of 12N+ 3 cells if Adams-Moulton option is used
or 4N + 3 cells if Runge-Kutta option is used

N is the number of differential equations

0 for Adams-Moulton variable step-size mode
K 1 for Runge-Kutta mode

2 for Adams-Moulton fixed step-size mode

(Bee Method)

EU is the upper bound of E_+I (See Method) for truncatation
error testing done in t_e_variable step-slze mode (EU_O).

P(_p) is used to compute the lower bound of En% I and, if use_,
should be P _0; if P = 0 the routine sets P = lO0.0

A is a constant used to control interval size reduction

(See Method) and should be A _0; if A = 0 the routine sets
A= 1.0

HMAX is the maximum value of h beyond which the routine should

not increase lhl (if HMAX = 0 the routine assumes there is

no upper limi{ _n lhI)

HMIN is the minimum value of h below which the routine should

not decrease |hI (if HMIN = 0 the routine assumes there is

 ower lhl
BETA is _ (See Method), the number used to increase or _ecrease

the interval size and must be 02 8_ 1 (if 6 = 0 the

routine sets 6 = 0.9)

DERIV is the name of a subroutine (supplied by the user) that

evaluates the derivatives in equations (1) and stores them

in T(4 + N) through T(4 + 2N - I); the name of this sub-

routine must also appear on an EXTERNAL card. This sub-

routine has no arguments.

If K = 1 or K = 2 then the quantities EU, P, A, HMAX, HMIN, and

BETA may be specified arbitrarily.

D2

Usage (continued)

The array T contains the following information:

T(2) = x, the independent variable
T(3) = h, the value of the interval size
T(4)= yl(x)
T(5) Y2(X)

_(4+ N- l) = yN(x)

_(4 + N) -- ysL(x)
(4 + N + l) : y(x)

• _.

_(4 ÷ _- 1) -- y_T(x)

values of the dependent variables

values of the derivatives that are

supplied by the derivative sub-

routine (i.e., DERIV)

Prior to the Set-Up entry the user must set T(2) = x°')T(3)N. = h and
T(4) through T(4 + N - l) to yj(Xo) (J : l, 2, ...,

The parameter N and the array T should appear in COMMON since

they are necessarily referred to in both the main program and

the subroutine that evaluates the derivatives• The integration

subroutine stores N, scaled at 3_, in T(1).

B. Integration Entry

This entry is used to integrate one step (i.e., from xj to Xj+l).

When control is returned to the main program the solutions

(Yl)J+l' (Y2)J+l ' ''" (YN)J+l (J = O, l, 2, ...) _-lll be

located in T(4) through T(4 + N - l) and xj+ 1 will be in T(2).

! ! !

The derivatives (Yl)j+l, (y2)j+l, ..., (YN)J+l will appear in

T(4 + N) through T(4 + 2N - I). •

The CALL statement for this entry is:

CALL INTM

No arguments are required for this statement.

C. Error Entry

This entry is used in the derivative subroutine (DERIV) to

terminate set-up or integration when an error occurs. The
CALL statement is:

CALL ERINT
-3-

D2

Usage (continued)

To take advantage of this entry, a cell in COMMON should be

assigned an integer value prior to either a normal or an error

return from the derivative subroutine. This cell can then be

used in a computed GO TO statement when control is returned to

the main program. If this error return is executed, a new set-

up entry must be made before any further integration may take
place.

When an error entry has been made, the integration or set-up is

terminatedpand control is returned to the main program at the

statement following the CALL statement (either CALL INT() or

CALL INTM) that initiated transfer to the derivative subroutine.

CALL ERINT is optional and may be left unused if all the

differential equations in (i) are well behaved (i.e., contain

no singularities, etc.).

Notation

For simplicity of notation, let Y(x) and F(x, Y) be N-dimensioned

vector_ the elements of which are YI' Y2' "'" YN and fl' f2' "'" fN,

respectively. Thus Y(x) = (YI' Y2' "'" YN) and F(x, Y) : (fl, f2' '''?fN)"

The initial conditions can be designated as Yo; i.e.,

Yo : (Yl(Xo), Ye(Xo), ..., YN(Xo)) : Y(Xo)- The system (i) and

initial conditions (2) may then be wrltten

[Y' = F(x, Y)

(3) Y(Xo)= Yo

The symbol Yj is taken to mean a solution of (3) that corresponds

to some value xj of the independent variable x. Also,

Y_ = Fj = F(xj, Yj). (J = O, i, e, ...)

The interval-size h (or step-slze, or step) is given by

h = xj+ I - xj.

-4-

D2

Method

The user has the option of using either of two methods: a fourth-

order Runge-Kutta method or a fourth-order Adams-Moulton method.

The Adams-Moulton method may be used with either a fixed or a

variable s%ep-size mode.

A. Runge-Kutta Method

The classical fourth-order Runge-Kutta method uses the
formulas

B.

Kl : _(xj,yj)

K2: _(xj+ ! h, Yj+ _ K1)
2

lh, yj+lK 3 = hF(xj + _ _ K2)

K4 = hF(xj + h, Yj + KS)

YJ+I = YJ + _ (KI + 2K2 + 2K 3 + K4)

J = O, I, 2, ...

(KI, K2, K3, K4 are N-dlmension vectors).

The subroutine takes advantage of certain computer operations

to control the growth of round-off errors in the above formulas.

The Adams-Moulton Method

Predictor Formula:

y(p) = YJ h
j+l + _ (55Fj - 59Fj_ I + 37Fj_ 2 - 9Fj_3) ,

where the superscript (p) indicates predicted value.

Corrector Formula:

) = Yj + 19Fj 5Fj_ 1 + Fj_2)

_(P) y(P))
where the superscript (c) indicates corrected value; _J+l = F(Xj+l, J+l °

D2

Method (continued)

If the Adams-Moulton option is used, YI, Y2' and Y3 are
calculated with the Runge-Kutta formulas (i.e., the first

three entries use Runge-Kutta). Thereafter, Xj+l,

y(p), F(p) y(C) and _(c) y(C)) (J = 3, ...)
J+l J+1' J+l' _J+l : F(Xj+I' J+l

are computed before control is returned to the calling program,

if the flxed-step-slze mode is used.

Variable Mode Option

If the variable-step-size mode is used, then the interval is

either decreased, left as it is, or increased in accordance

with the following inequalities:

If En+l_ EU the interval is decreased to _h;

if EL_ En÷l _ EU the interval size is not altered;

if En+l-_ EL for three successive steps, the step-size is

increased to _,

where

En+ 1 = Max

I-(P) y(°)l_n+l - n+l

14D
(the maximum is taken with

respect to all yj in Y),

IIy(C)l A1 respect to all in
D = Max I] n+li' ! with yj Y

EU is an upper bound for En+l, specified by the user, and is
equivalent to specifying the number of significant figures to

retain at each integration step (should normally be i0"6__ EU_ 10-3).

EU (the user specifies p such
EL = m is a lower bound for En+ I

P

that p _0)

A is used to prevent unnecessary reduction in h when the

magnitudes of the solutions are small (specified by the user

such that A_0, the routine will take A = 1 unless otherwise

specified)

= 1/2 unless otherwise specified.

I
i

D2

Method (continued)

After an interval is increased, the routine prevents in-

creasing again until six more points have been completed.

Decreasing is done as often as necessary.

The user must specify a starting value for h, and may, if de-

sired, specify mlnimum and maximum values of |h| beyond which

the routine will not decrease or increase lhl • Negative

values of h may be supplied for backward integration.

-7-

' . FI, F4

Identification

AL INVT, Inversion of a square matrix and solution of linear equations

FORTRAN IV, MAP-coded

Submitted by Ralph Carmichael

Purpose

This program solves the matrix equation AX=B where A is a square matrix

of dimension n and X and B are n x m matrices (m _ n). An option is

provided to calculate the inverse of A. The determinant of A is evaluated.

Usage

The subroutine is entered from a FORTRAN IV program by use of the statement

CALL INVERT (A,N,B,M, NROWS,DET,E)
where

A andB

N

M

NROWS

DET

E

Upon return,

X will be stored in B.

are the given matrices

order of the matrix A (N _ NROWS)

number of columns in the matrix B

number of rows listed in the dimension statement for A

the location where the value of the determinent will be stored

an erasable array of dimension _ N which is used to keep track

of the row-column interchanges

the inverse matrix A-1 will be stored in A and the matrix

The original A and B matrices are destroyed.

If M=O, the matrix A will be inverted but the computation of the X-matrix

is omitted. However, there must be an entry for B in the calling sequence.

Thus, array B will be left unchanged when M:O.

Method

The Gauss-Jordan reduction method is employed.

Timing

The time involved may be estimated from the equation

t = C,N 2 (N+M)

C is approximately 34_sec.

Reference

Ralston and Will, Mathematical Methods for Digital Computers, John Wile_

New York 1960, p.43-49.

C5

Identification

AL ITRA, Routine for Finding a Root, Within Specified Bounds, of a Function

See AL ITR2, AL ITRA

C5

Identification

AL ITR2, AL ITRA, Routines for Finding a Root, Within Specified Bounds,

of a Function

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine GM ITR2

Purpose

These subroutines are used to calculate a root of the function f(X) = 0.

Usage

The program ITR2 is called by means of the statement

CALL ITR

where

FUNCT

DELX

A

X

ERROR

(FUNCT, El, E2, DELX, A,B, X, ERROR)

is the name of a function subprogram that evaluates f(X).

It must be named on an EXTERNAL card

are numbers used in testing

for convergence, e.g.,:

"Ixil _ El,
If

then u_on satisfaction of

Xi - Xi-I I

the pr_cess is terminated.

the_ u_on satisfaction of

IXi " Xi_ll _ E2

the process is terminated

is the size of the scanning interval

the root is presumed to lie in

the interval (A,B)

the root

is an error indicator:

ERROR = -1.0 no root can be found

= 0 normal return

= +l.0 if more than 50 iterations have been taken

The subroutine ITRA has been prepared for purposes of nesting.

It is identical in usage and all other respects to ITR2. Its calling
statement is

CALL I_ ()

and the quantities within the parentheses are as described for ITR2.

Comments

Any parameters other than X which are required by the subprogram

FUNCT may be transmitted from the main program by use of COMMON.

Some caution should be exercised in the selection of the size of

DELX, the scanning interval. An excessive amount of computing time

is involved when DELX is too small. At the same time, DELX should

be sufficiently small that no more than one root be present within
this interval.

It may be observed that this subroutine will in most cases find a root,

if it exists, in the given interval (A,B). It is, however, less

page i

C5

efficient than the program AL ROOT(C5 1.0, on the FORTRANIV
library tape), although the latter may, on occasion, fail to give
desired results.

If the error return code (_RGR) is -i.0, e.g., if 50 iterations
have been taken in the search for the root, then the value of X
returned maybe satisfactory, since its accuracy is of the order
of DELX/2pU.

Method
The interval-halving method is used to find the desired root.
The function f(X) is evaluated at the starting point X = A,
and at intervals/\X (DELX)up to and including the endpoint X =B.
A changeof sign of the function across aLeX interval indicates
a possible root in that interval. The interval is halved successively
toward f(X) = 0 until the desired accuracy is achieved. The
function is evaluated only once for each halving step.
If 50 halving steps are taken, control is returne6 to the calling
program and an error indication is given. (ERROR= -1.O) The
value of X returned_ay be satisfactory, however, as its error
is of the order of_X/2 _0.

Reference

ALROOT FORTRAN IV Library Routine

page 2

JO

Identification

AL LOCA (LOCATE), Position a Magnetic Tape

FORTRAN IV, MAP-coded

Written by N. A. James and Revised by B. L. Meyer

Purpose

This subroutine permits the programmer to position a magnetic tape

at any file relative to the load point or another file.

Usag____ee

The statement

CALL _C_E(M, N)

will cause tape N to be rewound, following which it will be positioned
at file M. The statement

CALLSKIP(M,N)

will cause M files to be skipped (positive M for forward skipping,

negative M for backward skipping). If M is -O, the tape will be

positioned at the beginning of the present file. The statement

will position tape N at the beginning of the previous end-of-file (EOF)
mark.

Error Conditions

i. An error message is printed if the tape number, N, is entered

as zero.

2. If M = O in the CALL LOCATE(M,N) statement, an error message is

printed.

3- If M = +O in the CALL SKIP(M,N) statement, an error message is

printed.

Execution is terminated following the output of any of the above three

error messages.

Restriction

Always use L_ATE at least once with SKIP.

E2

Identification

AL LSQP (LSQPOL), Least Squares Polynomlal Fit

FoRTZANrV
Ames Modification of SHARE Library Routine AN E206

Purpose

This subroutine is used to calculate the coefficients of the poly-

nomials that represent the best least-squares fit to one or more

tabulated functloneY of an independent variable X. The variable X

has a set of associated weights W. In addition to the polynomial

coefficients, the weighted sum of squares, and the error matrix

are computed for each function Y.

Usage

The calling statement for LSQPOL is

CALL I_QPOL (X, Y, W,RESID, N,SUM, L, A, B, M)

where

X

Y

W

RESID

N

SUM

L

A

is the array of independent variable values.

is the two-dimensional array of dependent variable

values.

is the array of corresponding weights. This array should

consist of all ones if other weighting is not used.

is the two-dimensional array where residuals will be

stored.

is the number of values of X.

is the array used to store the weighted sums of squares
of residuals.

is the number of sets of Y values, and is therefore the

dimension of the array SUM, and the second dimension of

the arrays Y and RESID.

is the two-dimensional array used to store the error

matrix.

-j-

E2

Usage (continued)

B is the two-dimensional array used to store the polynomial

coefficients in order of increasing degree. The second

dimension of B is L.

M is the number of coefficients in the fitted polynomial(s),

which are of degree M-1. M therefore determines the second

dimension of A.

Restrictions

This subroutine has been compiled on the basis of N=50, and M _ 8,

and for compatibility with ALMATINV the first dimension of A

and B must be 20. Thus, the user must set up arrays dimensioned as

follows: X(50), Y(50, L), W(50), RESID(50, L), SUM(L), A(20,M), B(20, L).

If the dimensions of the arrays as compiled in I_QPOL are not adequate

in a particular case, the subroutine can be recompiled with revised

DIMENSION and COMMON statements. If LSQPOL is to be altered in this

fashion, it may be necessary to make changes in the dimensions of

arrays in the subroutine MTNV, used internally by ISQPOL.

COMMON has been reserved in both LSQP and _rNV by use of BLOCK

COMMON statements. This COMMON area has been labelled "ANE206", and

so the latter symbol may not be employed by the user. It is not

necessary for the user to reserve any COMMON storage in his program

for LSQP or MTNV.

Required Subroutines

The programs AL MTNV, and AL POLY are used internally by AL LSQP.

These two programs are on the FORTRAN IV library tape and need not be

requested by the user.

Method

The method of least squares involves the minimization of the function

r

N M-I

which leads to the linear system of algebraic equations

_F

J

= O, j = O, i, 2, ..., M-I.

t

E2

Method (continued)

The latter system of equations may be expressed as a matrix

equation, e.g.,

AE = B.

The above system of equations is solved internally by AL LSQP,

by use of the subroutine AL l_llqV, which performs matrix inversion

and solves systems of linear equations. The residuals are calculated

by subtracting Yi f_om the polynomial evaluated at Xi, and the error
matrix is simply A- , the inverse of A.

-3-

F4

Identification

AL LSQ_,_ Simultaneous solution by least squares of M equations in

(M N)
FOR_S_NIV, MAP-coded

Ames Modification of SHARE Library Routine CL LSQS3

N

Purpose

This subroutine is used to solve simultaneously a set of M equations in N

unknowns (M _ N). The method of least squares is employed. Residuals and

an unbiased estimate of the standard deviation of the solution may also be

computed.

The user has a set of equations of the form

XIAjl + X2Aj2 + • • • + XNAjN = Pj, J = i, 2, . •., M

where M _ N. The solution of this set is obtained by use of the calling
statement

CALL LSQSE(A,P,B,X,M,N,IT,SD,RESID,JEP_)

where

A

P

B

is an array of dimension M * N in whlch the coefficients Aij are
stored:

A(1) = A11, A(2) = A12, • •., A(N) = AIN

A(N + I) = A21 , A(N + 2) = A22 , • .., A(2N) = AmN

A[(M - I)N + i] : AMI , A[(M - I)N + 2] : AM_ , . .., A(MN) = ANM

is an array of dimension M in which the coefficients Pj are stored:
P(1) = PI, P(2) = P2, • • -, P(M) = PM

is an array of dimension N(N + 3)/2 that is used internally by the
subroutine•

X

M

is an array of dimension N that contains the solution:

X(1) = X_, X(2) = X2, . .., X(N) = XN

is the number of equations

N is the number of unknowns Xi, N S M

IT is an indicator that controls the computation of residuals, e•g•,

IT = O, residuals are not computed

IT = l, residuals are computed

SD is the unbiased estimate of the standard deviation of the fit.

RESID is an array of dimension M + N + i. The first M cells contain

the residuals, and the last N + i cells are used internally by
the subroutine•

JERR is an error code such that for

J = +l an overflow or underflow has occurred

J = -1 a pivotal element in a determinant is zero
J = 0 a normal exit has been made.

The dimensioning of arrays has been specified in the preceding discussion.
If a system of more than lO variables (N > lO) is to be solved, however, a

storage area set aside in the subroutine mast be increased in size, thus

necessitating a reassembly of the program.

Method

The given set of equations may be written in matrix form, e.g.,

m

AI_ A_ . . .

A21 A2e • • •

Am Am ...

AzN

AMN_

X21

e

FPl--

i

(i)

or

where M > N.

The values of the elements of A and P are usually the result of some type

of measurements, and so the above system of equations is, in general, incom-

patible, that is, numbers Xl, Xe, • • ., XN cannot be found which will
exactly satisfy all M equations. The problem thus becomes one of finding

a set of values Xl, Xe, • •., XN such that each equation is approximately
satisfied and such that the total error is as small as possible.

e

The method of least squares is used to calculate such a set of values.

The first step in obtaining the desired least squares solution is to pre-

multiply both sides of equation (2) by the transpose of [A], namely [AT]

(see ref. 1). That is,

[A T] [A 1 {X} [AT] "`
= _1_

or (3)

Upon expansion, equation (3) takes the form

A, Z AiIAia . Z Ai,AiN

_ AieAil _A_a • _ Ai2AiN

Z AiNAil _ _NAia ' "ZA_N

m

xlI

t

Xa I

. .; I

i

Z AiNPi

(4)

Where the sums are from 1 to M. The matrix [C] is seen to be square, of

dimension NXN, and it is shown in the reference that the solution to

equation (4) is, in fact, the desired best (least squares) solution. The

proof of this is tedious, and will not be reproduced here. The solution to

the system represented by equation (4) is obtained as follows. The matrix

[C] is triangularized by the method of pivotal condensation. The resulting

set of equations is then solved by elimination.

The unbiased estimate of _o' the standard deviation, is given by the rela-
tion

% = IRil

i=l

the quantities R i are the residuals, as computed from the M equations

XiAjl + X2Aja + • • + XNAjN - Pj = Rj , j = i, 2, . , M

--3-

The residuals are stored in the first M cells of the array EESID, and the

quantity _o will be found in SD.

It can be shown by a specific example that the solution to equation (4)

is indeed the least-squares solution. Consider a three-by-two system"

AliXl + A1aXe = PI

Aa_Xl + AaeXa = Pa

AslXl + Asa_Xa = Ps

the set Xl, Xm that is sought is the one that makes the sum of squares

of residuals a minimum, that is to say, the function

= (AI_XI + AlaX2 - PI) a + (A21Xl + A22Xa - P2) e

+ (AsIXl + AsaXe - P3) 2

must be minimized by this set. Then

-0, -0
8XI 8Xa

lead to the values of Xl, Xe which minimize the function ¢. Formally,

8¢ - 2[(AliXl + A1aXa - PI)AII + (AelXl + AaaXa - Pa)Aa_
8X_

+ (AsiXm + AsaXa - Ps)Asl] : 0

_Xa
- 2[(AliX1 + AIeX2 - Pl)Ale + (AaiXl + AeRXa - P2)Aaa

+ (AsiXl + AsaX2 - Ps)Ase] : 0

These may be condensed into the following form.

2 2
(A_l + Aal + Asl)XI + (AlaAll + AaaAal + AsaAsl)Xa = A11Pl + AaIPa + AsiPs

2
(AliAla + AeIAaa + AsiAsa)Xl + (A_a + Ace + Aaa)xa

= AI2PI + A22P2 + A32P 3

This pair of equations is clearly equivalent to equation (4) in the case

of a three-by-two system. The above example can be used as the starting

point for a proof by induction that equation (4) is the system whose

solution leads to the minimum value for the sum of squares of residuals.

-4-

References

Shilov, Georgi E.: An Introduction to the Theory of Linear Spaces (TR by

Richard A. Silverman from the original Russian) Prentice-Hall, Inc.,

1961.

FI,F4

Identification

AL MINV, Matrix Inversion and Solution of System of Linear Equations

FORTRAN IV

Modification, by Virginia L. Sorensen, of FORTRAN IV

Library Routine AL Ml_U/

Purpose

This program is used to solve the matrix equation AX = B, where A is

a square coefficient matrix and B is a matrix of constant vectors. The

inverse matrix A -1 is obtained, and an option is provided to calculate

the inverse matrix and omit solution of the matrix equation. The determi-

nant of A is also evaluated. All elements of matrices, and results, are

in single precision.

Usag_____e

This subroutine is entered by use of the statement

CALL MINV(A,N,B,M, DET)

where

A is an array, dimensioned exactly N×N in the calling program,

wherein the elements of the matrix A are stored by columns.

N is the order of matrix A

B is an array, dimensioned exactly NxM in the calling program,
wherein the constant column vectors B are stored.

M is the number of column vectors in matrix B

DET is the location where the value of the determinant of A is to

be placed.

Upon return, the inverse matrix A -I will be found in the array A, and

the solution vector X will be found in array B. If the subroutine is

entered with M = O, then only the inverse matrix A -i will be computed.

Precaution

The arrays A and B are two-dimensional, dimensioned exactly N×N and

NyuM, respectively. Alternatively, they may be one-dimensional arrays,

solidly loaded.

Method

Jordan's method is used to reduce the matrix A to the identity matrix I

through a succession of elementary transformations, TnTn-1. .TI A = I.

If the transformations are applied simultaneously to I and the matrix
B, the result is the inverse matrix A-I, and X, where AX = B.

Note

It maybe observed that this subroutine is identical to FORTRANIV
Library Routine AL MrNV, with the included feature, here, of variable
dimensions for the arrays A and B. A double-precision counterpart to
ALMINV has been prepared, namelyAL DPMI.

References

Bodewig, E.: Matrix Calculus.

1959, Pp. 182-183.

FORTRAN IV Library Routine AL

North Holland Publishing Co., Amsterdam,

MTNV, (FI-I.O)

FORTRAN IV Subroutine AL DPMI

FI, F4

Identification

AL MTNV (MATINV), Matrix Inversion and Solution of Systems of

Linear Equations

FORTRAN IV

Ames Modification of SHARE Library Routine AN F402

Purpose

This program is used to solve the matrix equation AX = B, where

A is a square coefficient matrix, and B is a matrix of constant
vectors. The inverse matrix A-- is obtained, and an option is

provided to calculate the inverse matrix and omit the solution of

the matrix equation. The determinant is also evaluated.

Usage

This subroutine is entered by use of the statement

CALL MATINV (A, N, B, M, DRTERM)

where

A

N

is the array that contains the coefficient matrix. The coefficients

are to be stored columnwise in A, e.g., in the order all, a21,... ,

anl , a12, a22 , ..., an2 , etc.

is the order of the matrix A (N _ 20)

B is the array that contains the constant column vectors

M is the number of column vectors

DETERM is the location where the value of the determinant

is to be placed

Upon return, the inverse matrix A -I will be found in the array A,

and the roots X will be found in the array B. If this subroutine

is entered with M = 0, then the inverse matrix A-lwill be computed,

but the computation of X will be omitted.

Restrictions

This subroutine has been compiled to solve systems of as many as

20 equations. The programmer must set up arrays as follows:

A(20,N), B(2%M). If it is desired to solve systems of more

than 20 equations, then MTNV can be recomplled with suitably

revised DIMENSION and COMMON statements or the subroutine AL

MINV may be used.

F1

_/lO/64

Restrictions (continued)

COMMON has been reserved in this subroutine by use of a BLOCK COMMON

statement. This COMMON area has been labelled "ANE206", and so the
latter symbol may not be employed by the programmer. The COMMON
reserved here is compatible with that set aside in the subroutine

AL ISQPOL, which uses AL M_NV _internally. The programmer need not

reserve any COMMON storage for use by MATINV.

Example

The following example is shown to illustrate the storage of

coefficients in array A.

X + 3Y + 6Z = l0

2X + 4y + 10Z = 20

6X + 9Y + 7Z = 13

A(1,1)= 1.0
A(2,1): 2.O
A(3,1)--6.O

A(1.2)= 3.0
A(2,2): 4.O
A(3,2)= 9.0

A(I,3) = 6.0
A(2,3) = i0.0
A(3,3) = 7.0

Method

Jordan's method is used to reduce the matrix A to the identity

matrix I, through a succession of elementary transformations,

TnT TIA = I. If these transformations are applied simultaneously
to _-_nd the matrix B, the result is the inverse matrix A"l and X,
where AX = B.

Reference

Bodewig, E.: Matrix Calculus. North Holland Publishing Co.,
Amsterdam, 1959. pp. 182-183.

JO

Ident ifi cati on

AL NDID Subroutine to Rewind, Backspace, and Place End-of-File

Marks on Magnetic Tape

FORTRAN IV, MAP

Written by B. L. Meyer

Purpose

This subroutine is used to rewind, backspace, and place end-of-file

marks on tapes. It may be used in conjunction with either FORTRAN or

MAP input/output procedures, but it must be used for the latter.

Usage

There are four entries to this subroutine.

These are shown in the chart below

c_ _w_m(N)
CALLBACKRC(N)

CALLBAC_FL(_)

CALLWREOF(N)

Rewind Tape N

Backspace tape N

one physical record

Backspace tape N

one file

Write end-of-file mark

on tape N

j4

Identification

AL PAGE, Print Date, Page Number, and Title

FORTRAN IV, MAP-coded

Written by V. L. Sorensen

Purpose

The purpose of this subroutine is to allow the programmer to place the

date and page number at the top of each sheet of printed output. An

option is provided to print a title along with the date and page number.

Usage

There are three entries to this subroutine, which will be discussed
below.

A.- CALL TITLE(nH...(title)..,I)

n is an integer constant _ 108

I is an option word

I = 0 page number is to be initialized

I = 1 page number is cumulative

This entry will cause ejection to the top of a new page. A fixed

title, as given in the first item of the calling sequence, will be

printed along with the date and page number.

B.- CALL VTITLE(V,J,I)

V is an array containing the desired title

J is the number of BCD words in the title (_ 18)

I is as in the discussion of TITLE, above

This entry will accomplish the same results as does CALL TITLE, except

that the title V is not necessarily fixed, but may be conveniently

altered with the use of BCD input cards at execute time.

C.- CALL PAGE

If either of the two entries, TITLE or VTITLE, haa been called then it is

sufficient to use CALL PAGE for each new page. The title that is printed,

along with the date and page number, is the one previously stored by the

CALL TITLE or CALL VTITLE statement. The page incrementing is accomplished

by simply placing the CALL PAGE statement in a llne-count loop.

J5

Identification
AL PALP, DrawsAlphanumeric and Special Characters on EAI Dataplotter Plots Using the Pen
FORTRANIV, MAP-coded
EAI Subroutine, wlth modifications by Melba Perniciaro

Purpose

This subroutine is used to draw any of 48 alphanumeric and special characters

(including blank) to the desired size at a desired location in either the X or Y

direction. Its primary use is the titling and annotation of plots prepared with the

FORTRAN IV routines AL PLTW(PLOTWS) or AL MPLT.

The calling sequence for AL PALP is:

CALL PALP(ORIGX, ORIGY, SCALE, ARRAY, NUM, NTAPE, NXORY)

The symbols in this CALL statement are defined as follows:

ORIGX_ The horizontal and vertical coordinates, respectively, (measured in

ORIGY) signed inches from the center of the page of plotting paper) of the

lower left hand corner of the first character to be drawn.

SCALE The height of the characters to be drawn (in inches).

ARRAY An array containing the alphanumeric characters (including blanks)

to be drawn, 6 characters/word, or a Hollerith string of the form

nH where nSNUM.

NUM The number of characters (including blanks) to be drawn.

NTAPE The logical number of the plot tape.

MXORY A code word controlling the direction the characters are drawn:

If NXORY = +i, the characters are drawn in the X direction.

If NXORY = -I, the characters are drawn in the Y direction.

Restrictions

The argument "ARRAY" in the calling sequence must be one of the following:

i. A Hollerith string Of the form nH , where n is the number of

characters (including blanks) to be drawn.

Example: CALL PALP (ORIGX,ORIGY,SCALE,

23HTHIS IS A SAMPLE TITLE.,23,NTAPE,NXORY)

2. An array containing alphanumeric information in BCD form, 6 characters/word.

The array can be filled from cards using the "A" format or with a DATA statement.

There are presently two EAI Dataplotters in use. For both plotters, the minimum

character height is 0.15".

The plotter must be in the "llne" mode to draw characters correctly. Thus, for

"point" plots the programmer should write an end-of-file on the plot tape at the

point where manual intervention is required to change the plotting mode.

Although the plotting paper is approximately 30 inches square, the actual area

available for plotting is quite different. In the X direction, we must allow an inch

on either side of the paper to keep the pen and printer arms from colliding. There

is no restriction on the pen in the Y direction. However it is wise to allow for the

addition of symbol printing to any plot, and for the printers we must allow 1-3/4" on

either side for the width of the printing attachment. Thus, it is recommended that all

plotting information, and thus all characters to be drawn by AL PALP, be confined to

an area of 28 inches by 26% inches.

Discussion
The 48 characters available include:

11 All alphabetic letters: A-Z

21 All numbers: 0-9

31 Special Characters: .,=/()$+-*, where "-" is either a minus sign or a dash.

41 A blank for spacing,

See the attached example for the actual shapes of the characters drawn by the plotter.

In general, the characters have a width to height ratio of I.i.

There are 7 exceptions:

W 1.2

(,) 0.55

.II 0.5

Thus, as a rough estimate, i0 characters, 1/4" high, to be drawn along the X-axis

would take a space of 1/4" in the vertical direction and 10"1/4"1.1 = ii/4" in

the horizontal direction. The same letters on the y-axis would take 11/4" in the

vertical direction and 1/4" in the horizontal.

The characters to be drawn by AL PALP will generally be fairly small, i.e., the

distance between successive points is small. Because of these small displacements,

the letters can be plotted rapidly, perhaps more so than the rest of the plot.

Thus, if possible, all labels should be put in a separate fi_e (designated as label

information on the plot request card) so that the plotter speed can be changed.

Examp Ies

I.

II.

(See attached sheets)

The first five lines illustrate different size letters:

i", 1/2", 1/4", .2", .15". The following coding was used:

DATA ALPHA / 6HABCDEF /

CALL PALP(O.0,ORIGY,SCALE,ALPHA,6,7,+I)

where ORIGY assumed the values 9.0, 8.0, 7.25, 6.5, 5.75

while SCALE was 1.0, 0.5, 0.25, 0.2, 0.15.

For the graph at the bottom of the page, AL PLOT was used for the curve and axes;

AL SFAC produced the scale factors on the axes (using the symbol printing

accessory of the EAI Dataplotter); and AL PALP labeled the plot. In this case,

the characters to be drawn were read into arrays OMS (dimension _),

CYC (dimension _), and CAP (dimension _) from cards, using the "A" format.

The calling sequences for AL PALP were:

CALL PALP (-0.5, 1.5, 0.15, OMS, 23, 7, -I)
CALL PALP (0.5, 0.25,0.15, CYC, 29, 7, +11

CALL PALP (4.0, 3.5, 0.15, CAP, ii, 7, +11

The letters along the right side of the page illustrate the

actual appearance of all the characters available. A string

of Hollerith characters was used in the CALL statement:

CALL PALP (6.5, 1.5, 0.15, 48HABCD...()$-,48,7,-I)

The second page of examples shows the labels to be used on a set of 18 plots.

J5

Identification

AL PLOT, Routine for Entrance to AL PLTW(PLOTWS)
FORTRAN IV

Written by Melba Perniciaro

This is a dummy subroutine that calls AL PLTW(PLOTWS) by using

the statement CALL PLOT (). Writeups of AL PLOT are available

in the CAB library files.

DIMENSION STALOC(2,20), IDATE (2,20), ITIME (_), ARRAY (5), OR IC (2O, 2),

I WORK(5), IWORK(5), FMTI (4), FMT2 (i)

EQUIVALENCE (WORK(l), IWORK(1))

DATA (FMTI (IO_ _IO_I, 4)/24H (2A6,2H, ,A6, A2,2 H , ,14)/, FMT2 (I) /

1 5H(SA6) /

I01

KOUNT=O

DO I01 I=I,NOSTA

WORK (I) =S TALOC (i, I)

WORK (2)=STALOC (2, I)

DO I01 J--I,NODATE

IWORK (3) --IDATE (i,J)

IWORK (4) =IDATE (2, J)

DO I01 K=I,NOTIME

IWORK (5)--ITIME (K)

CALL CVRT (WORK, 5,FMTI,ARRAY,5,FMT2)

KOUNT=KOUNT+ I

CALL PALP (ORIG(KOUNT,I) ,ORIG(KOUNT,2) ,0.15,ARRAY,28,7,+I)

C ONT INUE

Note that the numerical information in the labels was generated within

the program• It was converted to the proper form by using the FORTRAN IV
subroutine AL CVRT.

References

i. FORTRAN IV Library Routines AL PLTW

2. FORTRAN IV Routine AL MPLT.

3. FORTRAN IV Routine AL SFAC.

4. FORTRAN IV Routine AL CVRT.

and AL PLOT.

-3-

O
O
O

X

O0

T"
O

U
O
Z

I--
O

U

8

G

4

0

ABCDEF
ABCDEF

AOODEF

ABODEF

100 UUF

I
&9

-=

-4

I
"4-
II

O"
I:D
r'-
,,o
1.13

B..i

o

N
>--
X

>
::3
I-
f,/3
I'1,-
0
I1..
0
Z
!m
d

"r-
r...-3
i,
u
1:3
o
In

2, 5.33 8.66

FREOUENOY -

11,,99 15,32

KILOCYCLES X

-_-

1B.65

1000

21,98 E-I

J5

November I, 1965
Identification

AL PLTW(PLOTWS), Plots the Array Y Versus the Array X on the EAI Dataplotter

Using Either the Pen or the Symbol Printer

FORTRAN IV, MAP coded

Written by Melba Perniciaro, April, 1965

Purpose

This subroutine is used to plot an array of ordinates Y versus an array of

abscissas X on an EAI Dataplotter. The locations of these points on the

plotting paper are determined by the origin and scaling information supplied

by the programmer. Either the pen or the symbol printer may be used. (If

the pen is used, either lines or points may be specified on the plot request card).

usage
The EAI Dataplotter plots points, lines, or symbols on a sheet of paper that

is approximately 30 inches square. (See the heading "Restrictions" for a

discussion of the actual area available for plotting). The origin of a given

plot is referred to a fixed system of coordinates whose origin is at the center

of this 30"x 30" page. (See the sketch at the end of this summary).

The calling sequence for AL PLOTWS is:

CALL PLOTWS (ORIGX, ORIGY, SCALEX, SCALEY, X, Y, NUM, NTAPE, NSYM, NER)

The symbols in the CALL statement are defined as follows:

OR IGX
ORIGY)

SCALEX_

SCALEY(

xtY

The horizontal and vertical coordinates, respectively of the

origin of the plot, measured in signed inches from the center

of the page of plotting paper.

The number of units per inch in the X and Y (horizontal and

vertical) directions, respectively.

The arrays containing the X and Y values, respectively, of the

points to be plotted. More generally, X and Y are the locations

of the first X and Y values, respectively, to be plotted, and

the other values are stored sequentially following the first.

NUM

NTAPE

NSYM

NER

The number of points to be plotted.

The logical number of the tape on _Jhich the plotter information
is to be _itten

A code word controlling the pen and printer:

If NSYM is a negative non-zero integer, the pen is selected, i.e.,

no symbols are to be printed.

If NSYM contains a character of Hollerith information, e.g., NSYM = IHA,

the appropriate symbol will be printed (see Table I).

an Error code:

If NER = O, no error has occurred.

If NER = i, NSYM does not correspond to any symbol in Table I.

-I

J5

Restrictions

Although the plotting paper is approximately 30 inches square, the actual area

available for plotting is quite different• In the X direction, we must allow

an inch on either side to keep the pen and printer arms from colliding. Thus,

at all times, _X_ must be <.14.0". In the Y direction, there are restrictions

on the printers, but not on the pen. This allowance is 1-3/4 inches on either

side. Since it is wise to allow for the addition of symbol printing to any

plot, it is recommended that, at all times, J Y_ be < 13.25". Thus, plots

should be confined to an area of 28 inches by 26_ inches.

For symbol plotting the argument "NSY_' in the calling sequence must have one

of the following forms:

I. A Hollerith character written directly in the calling sequence•

Example: CALL PLOTWS (ORIGX, ..., NTAPE, IHA, NER)

In this case, the symbol desired is the letter "A".

2. A variable containing one character of alphanumeric information

in BCD form. The BCD code for the desired character must be in

the left-most portion of the word, and the remaining positions

must contain the BCD equivalent of blanks• NSYM can be filled

from cards using a format of'_l" or with a DATA statement•

Discussion

The plotters are run with the arm select switch at the "auto" setting. Every

time an entry is made to PLOTWS, the proper arm select command is given - pen

or printer. A modification to the plotters allows redundant arm select commands

to be ignored. (This is necessary since otherwise each arm select sends the

plotter to the "stand-by" position, i.e., both arms move back to the side of

the plotting table).

If symbols are to be printed on a llne plot, then PLOTWS must be called twice•

First, the symbols should be printed, using the appropriate setting for NSYM.

Then, the lines should be plotted by setting NSYM to a negative number. The

lines should be plotted last to avoid smearing the ink when the symbols are

printed• Notice that, unless symbols are to be printed at every point of the
line plot, the arrays X and Y are not the same for the two entries to PLOTWS.

When plotting with the pen, the plotting speed must be set manually. It is

inversely proportional to the "maximum point displacement", i.e., maximum

distance between adjacent points• Once this speed is selected, via the

"Maximum Point Displacement" control on the plotter console, manual interruption

of the plotting is required to change it. Now as an example, consider the

plotting of a curve (such that the maximum distance between adjacent points

is approximately 1/4") and a set of axes for this curve (where the maximum

distance between adjacent points is perhaps 2"). First the Dataplotter

operator must run through the plot with the pen up to determine how fast it

can be plotted• Then, the entire plot must be done very slowly because

the maximum displacement is 2". Thus, the following recommendations are made:

i. If possible, estimate the maximum point displacement for each

file of plot information on the plot request card.

2. If you have many points which are close together and a few which

are far apart, use separate files for the two sets of data. In

our example, if the data for the curve and the axes had been in

separate files, the former could then have been plotted with

maximum efficiency, using a setting of 1/4".

-7-

J5

PLOTWS may be called repeadedly if more than one set of data is to be placed

on a sheet. After the last CALL PLOTWS statement and at any point in the

plotting procedure where manual intervention is required of the Dataplotter

operator (e.g., change of plotter paper, ink color, line or point control,

or maximum point of displacement control), the programmer must write an

end-of-file on the plot tape by use of the FORTRAN statement.

END FILE NTAPE

In addition it is desirable than an end-of-file be written at the beginning of

each plot tape. In some applications it is desirable to plot with one or both axes

reversed, i.e., rotated 180 degrees. This may be done with PLOTWS by making the

appropriate scale factor a negative number.

Special Note

Attention is called to the fact that the programs AL PLOT and AL PSCA are

now subroutines which convert the CALL PLOT and the CALL PSCA statements to

the statements CALL PL(YI_S, and CALL SFAC with appropriate alteration of the

calling sequences.

Other FORTRAN IV Plotting Routines

AL SFAC, Prints X and Y scale factors of any magnitude, positive or negative,

in any of 3 modes - integer, decimal, or decimal with exponent.

SFAC can also print the value of a single variable anywhere on the

plotting page.

AL PALP, Draws alphanumeric and special characters for titling plots using the pen.

AL ALPP, Prints alphanumeric and special characters for titling plots.

AL MPLT, Plots data with automatic scaling and placement of origin so that the

maximum plotting area is 12" x 12". Both linear and logarithmic

scales are available. Special attention has been given to minimizing

plotting time while maintaining the best possible accuracy.

AL SCAL, Computes a scale factor, on the basis of a given axis length and the

maximum and minimum values to be plotted.

-3-

Symbols Available on the Printer Arms

J5

TABLE I

Hollerith Character

(NSYM)

Symbo I

0- 9

A- Z

+

- (minus)

)

/

- (dash)

$
blank

0- 9

A- Z

+

- _minus)

)

/

-4-

j-_

THE PLO-F PA6E

Y

_ ORIG,X = -I0"0 11
LoRI@ Y=-_ Z.O

THE PLOT P/_E

< I_"

PflYSICAL ORI6:IN

'i//
I_4L

I

II

(9 O_IGX=-I.O ,,
ORIG/' --Z O .O

C1

Identification

AL POLY(POLYEI), Evaluation of a Polynomial

FORTRAN IV, MAP-coded

Taken from SHARE Library Routine AN E206 (AL LSQP)

Purpose

This subroutine is used to evaluate the polynomial

b3x2 b4x3 bMxM- iy = b I + b2x + + + ... +

where the coefficients bl, b2, ..., bM, and the argument x,
are given•

Usag____ee

This subroutine is entered by use of the statement

Y = POLYE1 (X,M, B)

where

X is the value of the dependent variable

M is the number of coefficients in the polynomial

B is an array of dimension at least M that contains

the coefficients of the polynomial, e.g.,

B(1) --b I

_(2) = b 2

Y is the value of the polynomial for the given value

of X.

C1

Comment

This subroutine is used internally by the subroutine AL LSQP(LSQPOL),

but it is available for general use with no restrictions.

Method

The polynomial

b3x2 N_ -ly = bI + b2x + + ... +

is evaluated by use of the algorithm

y = (...((x_ + bM_l)X + __2)_ + ...)x + bl

J5

Identification

AL PSCA (PSCALE)

FORTRAN IV

Purpose

This subroutine generates the calling statement for AL SFAC from

the calling statement for AL PSCALE. Whenever possible SFAC

should be used directly• It is a more general routine• The full

writeup for AL PSCA will be found in the CAB library files•

V1

Identification

AL RDM, Random Number Generator

FORTRAN IV, MAP-coded

Ames modification of SHARE Library Routines GC 0008, GC 0010, GC 0011

Purpose

This subroutine is used to generate random numbers that are uniformly

distributed on the unit interval. Options exist to save the place in

the sequence of random numbers for a later restart.

The arithmetic statement

is used. The desired random number will be in the cell designated R.

The symbol DUMMY need not be defined in the calling program, and it

will not be altered by the subroutine. If it is desired to save the

place in the random sequence, so that upon restarting the program the

random numbers obtained will be a continuation of the original sequence,
the statement

CALLRDMOUT(OCT)

is used. The cell OCT contains an octal number which should be read

out using O-format. This octal number is then loaded into the program
prior to the restart, again using the 0-format. To re-initialize the

random number generator, the statement

CALLRD a (OC)

is used, where OCT is the previously saved octal number.

Method

The sequence of computations is

Ri+ I = (27 + 1)R i + 311715164025 s

The resulting fixed point number is converted to floating point form.

The method is that of Rotenberg (ref. 1). The octal constant in the

above relation was chosen since it is odd and approximates

[(.5 + _/6)285]io which is shown by Coveyou (ref. 2) to be that
constant which causes the least serial correlation.

-I-

References

i.- Rotenberg, A.: A New Pseudo-Random Number Generator. Jour. of the

A.C.M., vol. 7, no. i, Jan. 1960.

2.- Coveyou, R. R.: Serial Correlation in the Generation of Random

Numbers. Jour. of the A.C.M., vol. 7, no. i, Jan. 1960.

-2-

Identification

AL REWN(REWUN), Rewind and Unload a Magnetic Tape

FORTRAN IV, MAP-coded

Written by V. L. Sorensen

Purpose

The use of this subroutine allows the programmer to rewind and
unload a logical magnetic tape.

A logical tape is rewound and unloaded by use of the statement

CALL REWUN(N)

where N is the logical tape number

Restrictions

The tape to be rewound and unloaded must be one that has been

mounted specifically for the job at hand. It may not be used for

the standard input and output tapes 5 and 6, and should not be used

with a tape that has been written by the plotting subroutine,
AL PLTW.

VI

Identification

AL RNDM, Random Number Generator

See AL BARN, AL RNDM_ Ames FORTRAN IV Library subroutines.

C5

Identification

AL ROOT, Calculate the Root, Within Specified Bounds, of a Function
FORTRAN IV

Written by V. L. Sorensen

Purpose

This subroutine is used to calculate a root of the function
f(x) = 0

usage

This subroutine is entered by use of the statement

CALL ROOT(F,X,G,BL,BU,EI,E2,1)

X

G

BL

BU

where

F is the name of a function subprogram with a single

argument, X, that is used to evaluate f(x). It must

be named in an EXTERNAL statement.

is the root and the argument of the function subprogram F.

is an initial guess, supplied by the programmer.

is the lower bound on X.

is the upper boundjon X.

Ell are numbers that specify the degree of precision expected

E2J of the root determination. See subsection D under Method

I is an error code:

I = i normal return

I = 2 G is outside of the specified limits

I = 3 BU is smaller than or equal to BL

I = 4 two successive iterations produce the identical

function value, but the convergence criteria are
not satisfied

I = 5 a root cannot be found within the given bounds

C5

Usage (continued)

An example is presented to illustrate the usage as discussed
above.

EXTERNAL FUN
BL = 0.0

BU = I0.0

G= 5.0
E1 = 1.0E-6

E2 = 1.0E-6

CALL ROOT (FUN,X,G,BL, BU, El, E2,I)

GO TO(l, 2,2,2,2), I
I-

CALL EXIT

2 CALL E_OR(2,0)
END

The function subprogram _UNmight be:

FUN = X_3 + X_2 - 2.0
RETURN

END

Method

The root, if it exists, is determined by an iterative technique
based on the Newton-Raphson method. The iteration relation is

Xn+ 1 = xn - f(Xn)/f'(Xn)

and the derivative f' (Xn) is approximated by the linear relation

f'(Xn) = f(Xn) - f(Xn_l)

xn - Xn_ I

The indexes n+l, n, n-i refer to the new value and two previous
values respectively. Four cases can now be distinguished.

c5

Method (continued)

A. Initially, xn and Xn_ I are taken to be

Xn= GI

Xn_ 1 = 0.1(G1 - BL) + BL

where

G1 = G if BL-= G-= BU

= 0.5(BL + BU) if G = BL or if G = BU

B. Subsequently, if Xn+ 1 falls outside of the specified upper

and lower bounds, new starting values are inserted for xn
and Xn_ 1. Five such restarts are provided, and if none lead

to the desired root, no further attempt is made. The five

pairs of starting values are:

(i) GI,_u- O.l(BU- al)
(2) _T.+ O.l(Ql- _T.),o._(Bn+ al)
(3) 0.5(BL + G1), GI

(4) GI, 0.5(BU + G1)

(_) o._(_u+ al),_u - o.l(_u+ Ol)

%_he symbol G1 has been defined in A above.

Co If the root has not been bracketed by two values of x i

within the specified bounds such that one gives a positive

value for f(x) and the other a negative value for f(x),

then the values taken for xn and Xn_ 1 are the two produced

by the immediately preceding iterations.

D. If the root has been bracketed as described in C, then x

and Xn_ 1 refer to the most recent iterations for which f_Xn)

was positive and f(xn_l) negative.

The iteration process is continued until either of two convergence
criteria is satisfied. These criteria are

and

(i) If(Xn+l)lE1

(2)Ix +-l x l

--3-

c5

Method (continued)

If the root has been bracketed,

xn replaced by xn_ 1.

then test (2) is repeated with

-4-

C2

Identification

ALROP, Roots of a Real or Complex Polynomial

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine GL ROP1

Purpose

This subroutine is used to compute all of the roots, real and

complex, of the polynomial

aoxN + alxN-1 + ... + aN = 0

where the coefficients ao, al, ..., aN may be real or complex.

Usage

This subroutine is entered by use of the statement

CALL ROP(N,P,R)

where

N is the degree of the polynomial

P is the array of dimension at least 2N + 2 where

the coefficients ao, ..., aN are stored

R is the array of dimension at least 2N where the

polynomial roots are to be stored.

The coefficients of the polynomial are stored as follows:

Re ao P(2N + 2)

Im ao P(2N + l)

Re aN P(2)

aN e(1)

Upon return from the subroutine, the roots will be found in the

array R as follows:

C2

Usage (continued)

Re xI
Imx I

Re xN

Imx N

R(2N- l)

R(1)

Caution

The arrays P and R are not arranged in a manner that is directly

compatible with the use of FORTRAN IV complex arithmetic.

Method

An initial approximation is made to a root, and the order of the

polynomial is then reduced by synthetic division• Each root is

refined using the original polynomial.

J5

Identification

AL SCALj Scale Factor for Plotting Purposes
FORTRAN IV

Written by James A. Jeske

Purpose

This subroutine is used to compute a scale factor, on the basis of a given axis

length in inches, and minimum and maximum values to be plotted on that axis.

The computed scale factor will be one of the following:

i * ION

2. I0N

4. ION

5 * I0N

8 . ION

where N is a positive or negative integer. The scale factor will be determined

such that the absolute value of the maximum value to be plotted will not

exceed the specified curve length by more than one inch.

Usage

The subroutine is entered by use of the call statement

CALL SCALE(VMAX,VMIN, PS, SF)
where

VMAX is the maximum value to be plotted

VMIN is the minimum value to be plotted

PS is the length, in inches, of the axis that corresponds to VMAX and VMIN

SF is the scale factor, units per inch, as computed by the subroutine

Example

Suppose that the following numbers apply in a certain problem:

XMAX = 14.6 sec

SMIN = 2.3 sec

SIZX = i0.0 in

YMAX --1.2 ibs

YMIN = 18.3 ibs

SIZY = 8.0 in

The calling statements

CALL SCALE (XMAX, XMIN, SIZX, SCALEX)

CALL SCALE (YMAX, YMIN, SIZY, SCALEY)

would compute scale factors

SCALEX = 2.0 sec/in

SCALEY = 2.0 lbs/in

The scale factor SCALEX has been picked so that the length on the X-axis

that corresponds to the time interval XMAX-XMIN , here 12.3 sec, does

not exceed the specified SIZX by more than one inch. If a scale factor

of 1.O had been chosen, the specified value of l0 inches would have been

exceeded by 2.3 inches, and so the next best value, namely 2.0 has been

computed. The value calculated for SCALEY, namely 2.0, allows the maximum

value to plot 0.55 inches beyond the specified 8.0 inch limit, which, is

acceptable. The sketch below illustrates the example presented here.

page 1

y-axis

8.55" I

0
0

SK_-TcH

: ?
........ -'-E,.b".............

i . ,I .,

z,3 _a,.._

"........... I0.0

X-axis

The solid line is the specified curve. However, with the scale

factors that were computed, the broken curve will be the actual

plotted curve.

page 2

35

Identification

AL SFAC Prints Scale Factors or the Value of a Single Variable on EAI Dataplotter Plots

IV, MAP coded

Written by Melba Perniciaro

Purpose

This subroutine has 2 functions:

i. To print X and/or Y scale factors at one inch intervals along the axis

or axes of a plot. The plot itself is prepared using the FORTRAN IV

routines AL PLOTWS or AL MPLT.

2. To print the value of a single variable anywhere on the plotting page.

This is especially useful in preparing title information for plots.

For both functions, positive and negative numbers of any size can be printed

in a choice of three modes: integer, decimal, or decimal with exponent.

The calling sequence for AL SFAC is:

CALL SFAC (ORIGX, ORIGY, SCALEX, SCALEY, NUMX, NUMY, VORIGX, VORIGY,

NTAPE, MODE)

The symbols in the CALL statement are defined as follows:

I. To print scale factors:

ORIGX_ The horizontal and vertical coordinates, respectively, (measured in

ORIGYJ signed inches from the center of the page of plotting paper) of the

origin of the axis or axes along which printing is to be done.

SCALEX_ The number of units per inch in the X and Y

SCALEYJ (horizontal and vertical) directions, respectively.

NUMX _ The number of scale factors to be printed on the

NUMY] X and Y axes, respectively.

VORIGX_ The first values to be printed on the X and Y axes,

VORIGY _ respectively.

NTAPE The logical number of the plot tape.

MODE A parameter controlling the format of the numbers

printed (see the heading "Discussion"):

If MODE = i, use the integer mode.

If MODE = 2, use the decimal mode.

If MODE = 3, use the decimal mode with exponent.

If NUMX = O, no scales will be printed on the X axis, and a similar statement applies

to NUMY. In either case, the corresponding scale factor (SCALEX or SCALEY) and in£tial

value (VORIGX or VORIGY) are not used and may have any value.

II. To print a single variable:

ORIGX_ The horizontal and vertical coordinates, respectively, (measured in

ORIGYJ signed inches from the center of the page of plotting paper) of the

starting point for printing the value of the variable.

SCALEX Set to O.

SCALEY This is not used and may have any value.

NUMX Set to -I.

NUMY Set to O.

-I-

VORIGX

VORIGY

NTAPE

MODE

The value of the variable to be printed.

This is not used and may have any value.

The logical number of the plot tape.

See the description in I. above.

If desired, the roles of NUMX and NUMY may be interchanged.

also the roles of SCALEX and SCALEY and VORIGX and VORIGY).

in the results is the position of the exponent in mode 3.

appears to the right of the number; for NUMY = -I, it is above the number.

(See the heading "Discussion").

(Interchange

The only difference

For NUMX = -I, it

Restrictions

Regardless of the mode being used for printing, i.e., integer, decimal, etc., the

variables in the calling sequence always have the same mode:

ORIGX, ORIGY, SCALEX, SCALEY, VORIGX and VORIGY are

floating point variables, while

NUMX, NUMY, NTAPE, and MODE are integers.

The subroutine SFAC will perform all necessary rounding and conversion procedures.

Although the plotting paper is approximately 30 inches square, the actual area

available for plotting is quite different. In the X direction, we must allow an

inch on either side of the paper to keep the pen and printer arms from colliding.

Thus, at all times, IXI must be _ 14.0". In the Y direction, we must allow

1-3/4" on either side for the width of the 48 character printing attachment.

Thus, _Y_ must be _ 13.25". This means that all plotting information must be

contained in an area 28 inches by 26_ inches.

Discussion

The 3 modes available for the numbers to be printed are:

i. Integer - A maximum of 6 digits and a sign (if negative) will be printed.

2. Decimal - A maximum of 5 digits, a decimal point, and a sign (if negative)

will be printed.

3. Decimal with exponent - Each number is printed in the decimal mode above.

One-fourth inch to the right of or above the last scale on the X and Y axes,

respectively, an exponent is printed. The exponent consists of a sign

(if negative) and a maximum of 2 digits, preceded by a symbol to indicate

that what follows is an exponent.

In all cases, only significant digits are printed. Extra zeros to the left or

right of the number are suppressed.

For scale factors on the X axis, the numbers are printed so that they are centered

about (ORIGX, ORIGY - 0.25), (ORIGX + 1.0, ORIGY - 0.25), etc. On the Y axis,

the scales are centered about (ORIGX - 0.5, ORIGY), (ORIGX - 0.5, ORIGY + 1.0), etc.

For single variables, the center of the number, excluding any exponent, is at

(ORIGX + 0.3, ORIGY).

Within any particular scale factor or exponent, corresponding points on adjacent

characters are 0.I" apart.

Notice that when printing scale factors, the values specified for ORIGX and ORIGY

are the origin of the axis or axes along which printing is to be done. This is

usually not the same as the origin of the plot, i.e., the location of (0.0, 0.0).

For neatness, it is recommended that scale factors be printed around the outside

perimeter of the plot.

To achieve maximumefficiency, this routine is written to use the "select and print"

mode of an EAI Dataplotter equipped with a 48 character symbol printer. In this

mode there is virtually no delay for changing the character to be printed since

this is done as the plotter moves to the point where the new symbol is to be written.

Examples

The following examples illustrate the usage of AL SFAC. All numbers on the page

were printed using SFAC, while AL PALP did the lettering. Notice the use of the

single variable function of SFAC to print the numbers for the headings:

"Example 5", "Example 6", etc.

Example: CALL PALP (1.5, 1.5, 0.15, 7HEXAMPLE, 7, 7, +I)

CALL SFAC (2.5, 1.55, 0.0, 0.0, -I, 0, 7.0, 0.0, 7, i)

The following calling sequences were used for the examples:

Examples I - 4 illustrate the single variable function of SFAC

I. CALL SFAC (7.0, 7.0, 0.0, 0.0, -i, O, -123456.0, 0.0, 7, i)

2. CALL SFAC (7.0, 8.0, 0.0, 0.0, 0, -I, 0.0, 12.345, 7, 2)

3. CALL SFAC (7.0, 9.0, 0.0, 0.0, -I, 0, 12.345E-17, 0.0, 7, 3)

4. CALL SFAC (7.0, I0.0, 0.0, 0.0, 0, -I, 0.0,-0.9999E32, 7, 3)

Examples 5 - 7 illustrate the scale factor function of SFAC. In example 5, we

called the subroutine twice to get decimal numbers on the X axis and integers on

the Y axis. In example 6, we used a negative scale factor on the X axis.

(This can be done on either axis). Example 7 indicates the position of the

exponents in mode 3 and also the variety of numbers that SFAC can handle.

5. CALL SFAC (5.0, 5.0, 0.IIiii, 3333.0, 4, O, 0.0, -I0000.0, 7, 2)

CALL SFAC (5.0, 5.0, 0.Iiiii, 3333.0, 0, 6, 0.0, -i0000.0, 7, I)

6. CALL SFAC (3.0, 3.0, -0.I, 0.i, 6, 8, 0.3, -7.2, 7, 2)

7. CALL SFAC (I.0, 1.0, 1.0E34, 5.0E-34, 7, i0, 0.0, -28.0E-34, 7, 3)

References

Fortran IV Library Routine AL

Fortran IV Routine AL PALP.

PLTW.

-3-

E-34

17,

12,

71

2o

--3.

--8o

--13,

--23.

--2B°

Oe

--6,5

--6.6

--6,7

--6,8

"-6.9

--7°

--7, I

--7,2

6665 4

E 31

--9,999

3352

--I

-3334

--6667

--I0000

03
hi
J
11
E

X
I.I

3 1,2545 E-16

2 12,345

I --123456

EXAMPLE ._

O, ,11111 .22222 .3:5333

EXAMPLE

,3 ,2 , I O, --, I --o2

EXAMPLE 7

1 1 3, 4t 5, 6, E 34

-4-

• D1

Identification

AL SIMP, Integration by Simpson's Rule

FORTRAN IV, MAP-coded

Ames Modification of SHARE Library Routine CL INT4

Purpose

This subroutine is used to compute the integral of a function,

tabulated at equal or unequal intervals.

Usage

The calling statement is

CALL SIMP(R, X, Y, N, I)

where

R

X

Y

N

I

is the result of the integration

is the name of the array that contains the independent variable

is the name of the array that contains the dependent variable.

is the number of values in the arrays X and Y

is an error code

I = 1 no error, normal return
: 2 N=O or N=I

= 3 overflow or underflow has occurred

= 4 the array of X-values is not monotonic

Restriction

The independent variable must increase or decrease monotonically,

and N must be two or greater.

Method

The integral

R = IYdX

X1

is evaluated by fitting parabolas to successive intervals and

integrating over these intervals. The dependent and independent

variables are given in tabular form, and the values of the

independent variable need not be equally spaced. If N is odd,

then _he interval (Xl, X_T) is divided into (N-l)/2 intervals

(Xl, Y3), (X_'X_)'''" (_N-2.x,N ") A parabola is fitted through
the tl_ee poXnt_ of each interval. The integral is then

evaluated for each interval, and the results are summed to

produce the integral over the entire interval (Xl, XN). If N is
even, then a parabola is fitted through the tk_ee polnts

X I, X2, XA, as above, and the integral is then evaluated in the

interval _XI, X2). The remaining points in the interval (X2, XN)

are treated as in the case of odd N. The latter results are

added to the integral over the interval (XI, X2) to give the

integral over the interval (Xl, XN).

page 1

D1

_ne formula

Y = Y1 + (X - X1) (Y1 - Y2)Xl X 2

X I - X 3 Xl X2 X 2 - X 3

is used for the parabolic fit to three adjacent points.

page 2

B2

Identification

AL SINH-COSH, Hyperbolic Sine and Cosine Functions

FORTRAN IV, MAP-coded

Ames Adaptation of Similar Program in the ABC Compiler

Purpose

This subroutine is used to compute the functions Y = Sinh(X)

and Y = Cosh(X), where X and Y are slngle-precision floating-

point numbers.

Usage

This subroutine is entered by use of the statements

Y = SI_(X)

and

Y =

Error Condition

If this subroutine is entered with a value for X greater in

absolute magnitude than 87.3, the value returned for the function

is the largest machine number, e.g., 0.1701412E39.

Accuracy

The results from this subroutine are accurate to seven significant

figures.

Timing

The average computing times are 393 _s and 382 _s for SINH and

COSH, respectively.

E1

Identification

AL TAIN(TAINT), Table Look-up and Interpolation
FORTRAN IV, MAP-coded

Written by V. L. Sorensen

Purpose

This subroutine is used to evaluate one or more functions of an

argument X, when the functions and the argument are given in tabular
form.

Usage

The CALL statement for this subroutine is

CALL TAINT (XTAB,_TAB, X,FX,N,K, NER,DMON, GTAB, GX, HTAB, HX, ...)

where

XTAB is the name of the array that contains the values of

the argument of the functions, which must increase or

decrease monotonically.

FTAB

GTAB

HTAB

X

are the names of arrays that contain the values of the

functions of the argument in XTAB.

is the value of the argument for which function values

are sought•

FX

GX

HX

N

are the values of the functions as obtained by the
subroutine.

is the number of tabulated values, and so the arrays

XTAB, FTAB, ..., are of dimension at least N; N_K.

K is the order of interpolation; K_ 9.

-I-

E1

Usage (continued)

NER is an error code:

NER= 1

NER= 2

NER=3

normal return

K _'9 or N-CK

adjacent values within the array XTAB

are equal.

DMON is a variable that must be set to zero initially,
and whenever XTAB is altered. Each }(TAB within

a given program should be assigned a unique DMON

symbol. The contents of DMON are altered by the subroutine.

Restrictions

The table XTABmust be monotonic, and adjacent values may not be

equal. The order K must be smaller than or equal to 9, and N

must be greater than K.

Method

A binary search is used to find the region of the table where the

desired result is to be found. Aitken's method of interpolation

is then employed to determine the precise functional values

corresponding to the given value of the independent variable.

Aitken's method is a computational scheme for evaluating the

La_grangian interpolation polynomial without having to compute

polynomial coefficients. The development of the Lagrangrian

interpolation method will be omitted here, as details may be

found in many standard texts (i.e, see reference 1). The Aitken

method (see reference 2) consists in the repetitive use of the

formula

_+n = <-ll(Xm+n - X) - yn+l(x n - X)m n -i

Xm+ n - Xn_ I

The superscripts and subscripts are indices, and never exponents,

in this formula. For a given value of the order K, the above

formula is applied for n in the range l, 2, ..., K, and for each

n_the values for m are taken in the order O, I, ..., K-1. The

restriction n+m_K applies. Thus for linear interpolation (K=I),

this process is carried out with a single application of the

above general formula, e.g.,

-2-

E1

Method (continued)

0

l Yo(Xl-x)- Y_(Xo-x)
Y1 =

X 1 - X o

For the case K = 3, the process is repeated six times.

The six iterations give

O

- - Yl(Xo- x)= Yo(Xl x) o

X1 - Xo

n=l, m=O

01 (x2 - x) - Y2(Xo- x)
Y2 = n= i, m= i

X2 - Xo

Y°(x3 - x)- Y](Xo-x)
Y3: n=l, m: 2

X 3 - Xo

y2 _(x2- x)- _(xl- x)
2 = n=2, m=O

X 2 - X I

2 YII(X3- X) - Y_(X I - X)
Y3 = n= 2, m= i

X 3 - X 1

3 Y_(X3 - x)- Y_(X2- x)
Y3 = n= 3, m=O

X 3 - X 2

Note that the fourth and fifth iterations depend upon the first, second,
and third, and that the sixth and final one depends on the fourth

and fifth. It is eYident that the Aitken method may be character-

ized as the repetitive application of a linear interpolation process.

-3-

E1

References

i. Whittaker, E., and Robinson, G.: The Calculus of

Observation. Blackie and Sons Ltd., London, 1946.

2. Kopal, Z.: Numerical Analysis. John Wiley and Sons, Inc.,

New York, 1961.

3. SHARE Program GM TIN2, Table Look-Up and Interpolation.

-4-

B1

Identification

AL TAN, Tangent Function

FORTRAN IV, MAP-coded
Adapted from the ABC Compiler

Purpose

This subroutine is used to compute the function Y = Tan(X),

where X and Y are single-precision floating-polnt numbers,
and X is in radians.

Usag____ee

The subroutine is entered by use of a FORTRAN statement, e.g._

Special Case

The.subroutine returns zero for arguments outside the range

-226 to +226, and computation proceeds.

Accurac_

This subroutine gives results accurate to seven significant

figures.

Timing

The average computing time for TAN(X) is 456 Vs.

e'floc[

The function tan(x)

expression:

is calculated by use of the continued fraction

tan x = X

X 2l+
X 2

3+

+

"+ X 2

Z0

Identification

AL XPAR, Test the Parity of an Integer

FORTRAN IV, MAP-coded

Written by A. L. Summers

_Purpose

This subroutine is used to determine the parity of an integer

Usage

The subroutine XPAR is entered by use of the statement

J = _AR(1)

Upon return,

J = 0 if I is even

= 1 if I is odd

Note

Before its use, XPAR must appear in an INTEGER type statement in the

program where it is being used.

B3

Identification

IBM ALGI(ALOGI0)_ ALOG Common and Natural LoEarithms

See Wrlteup for Ames FORTRAN IV Library Routine IBM ALOG

B3

Identification

.BMAL_, ALGI(nOGIO),_.tu._1..dCo=o. Logarithm.
FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute common and natural logarithms

of a single-precision floating-polnt positive number.

Usage

This subroutine is entered with the statements

and

Y--AL_(X)

Y = A_mlO(X)

for natural and common logarithms respectively.

Error Condition

If this subroutine is entered with X equal to zero or a negative

value, an error trace is executed, and one of the following two
messages is printed.

_(0) NOT ALLOWED

(-B) N __

Control is returned to the calling program. In the case of X = O,
the subroutine returns a value of zero for Y, and in the case of

entry with negative X, the logarithm of the absolute value is returned.

Accuracy

The absolute error is less than or equal to 3 x lO"8.

Timing

The execution times for ALOG(X) and ALOGIO(X) are approximately

200_s and 204_s respectively.

-j-

B3

Method

A. Loge(X)

Let X = 2I.f

Bo

then

loge(X) = I loge2 + logef

= I loge2 + log2f • lo_2

= (I + log2f)1ogea

The approximation

log2_ = z(A + B/(c - z_)) - 112

where

Z -

and

A = 1.2920070987

B = 2.6398577035

C = 1.6%7626301

is then employed.

:tog:to(X) = (-r + Zogdr) 1%o2

-2,-

R1

Identification

IBM AND, OR, CMPL(COMPL), BOOL, Boolean Functions

FORTRAN IV, MAP-coded
Standard 7094 Library (]]3LIB) Routines

l_rpo Be

The built-in functions AND, OR, and COMPL are used to perform the Boolean

operations intersection (_), union (_), and complementation (_), with

all masking and complementing done on a fUll 36-bit logical word. The
built-in function BOOL is used in the arithmetic IF statement so that a

test for zero or non-zero will be performed on the full 36-blt logical word.

Usage

The use of these functions is illustrated in the chart below.

FORTRAN IV Statement Operation

x _m(A,_)

Y=OR(A,B)

X C_mT(A)

_(BOOL(A))ZOO,iOl,ZOO

A_B (Intersection)

A _ B (Union)

-_ A (Complementatlon)

If all 36 bits of location

A are zero, transfer to
statement _lO1; otherwise

go to #i00.

The quantities A and B, as well as Y, are full logical words.

Examples

i)

2)

Let A=668 and B = ?l8. Then

Y=AND(A,B) yields 608

Y=OR(A,B) yields 778

Y=COMPL(A) yields 7777777777118

Let A=4000000000008.

Since A=4000000000008 is the same as A = -0.0,

IF(A)lO0,101,100 will transfer to statement #101 erroneously,

while IF(BOOL(A))lO0,101,100 will transfer to statement #100 as desired.

-I-

Timing

These operations are performed in under 22_s.

Comment

l) The equivalence between the usage of these functions in FORTRAN IV and

Boolean statements in FORTRAN II is shown in the chart below.

FORTRAN IV

Y--_XO(A,B)

Y=Ca(A,_)

--C(A)

Z;(BOOT,(A))iO0,101,i00

*FORTRAN II Boolean StatementE

Y--A*B

Y=A+B

Y=-A

IF(A) i00, lOl, i00

-_ These statements contain _ in column 1.

2) A good example of all Boolean operations:

IF(BOOL(OR(AND(A, COMPL(B)), AND (B,COMPL(A)))))lO0,101,100

B1

Identification

IBM ATAN,ATN2(ATAN2), Inverse Tangent Functions

FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute the value of the function

Y = Arctan(X) or Y = Arctan(X/Z_ where X, Y, and Z are single-

precision floating-point numbers, and Y is in radlans.

Usage

This subroutine is entered with the statements

or

Y : A_AN(X),-_12--_Z _--+_12

Y = ATAN2(X,Z), -_ Y_+_

Error Condition

An error indication is given in the computations using ATAN2

for the case of X = Z = O. An error trace is executed, and then

the message

._._2(o,o) No_ ,_ZOWlm

is printed. Control is returned to the calling program.

returned for ATAN2(O,O) is zero.

Accuracy

The absolute error is less than or equal to lO "8.

Timing

The average computing time for ATAN is 278 _s, and for AT N2,

The value

319 _s.

B1

A. Arctan(X)

(a) For positive values of X:

(1) If X=- 227 , Arctan(X) = _/2

(2) If X_= 2-27 , Arctan(X) = X

(3) For other values of X, locate X in one of five sub-

intervals, according to the location of the corres-

ponding Arctan(X), i.e., k = l, 2, 3, 4, 5_where Arctan(X) is

in one of the intervals 0 - i0 O, i00 - 300, 30° - 90%
50° - 70% 70° - 90 ° • Then

otan(x) : ((k- l)/9)_ctanz_

where

[09]2 + - C2(t2 +Arctan Zk = tk tk

and

and

tk = 9X/55 for k = i

-1

tk = _ - Bk (X + Ck) for k = 2, 3, 4, 5

and the constants CI, C2, C3, Ak, Bk, and Ck take

on appropriate values.

(b) For negative values of X:

Arctan(-X) =- Arctan(+X)

Arctan(X/Z)

(a) If Z = O, Arctan(X/Z) = _/2 if X=-O

=-_/2 if X "= 0

(b) If Z I 0, compute R : X/Z, and then

_o

(i) If Z =-% Arctan(X/Z) : Arctan(R)

(2) If Z -= 0, Arctan(X/Z) : Arctan(R)+_ if X =- 0

= Arctan(R)-_ if X "= 0

81

Identification

IBM ATN2(ATAN2)_ ATAN, Inverse Tangent Functions

See writeup for FORTRAN IV Library routine IBM ATAN.

ll

Identification

IBM BOOL,AND,OR, CMPL(COMPL), Boolean Functions

See writeup for FORTRAN IV Library Routine IBM AND.

R1

Identification

IBM CNFL(COHPL), BOOL, AND_ OR, Boolean Functions

See writeup for FORTRAN IV Library Routine IBM AND.

BI

Identification

IBM COS, SIN, Sine and Cosine Functions

See FORTRAN IV Library Routine IBM SIN.

N2

Identification

IBM DUMP, PI)UMP), Selective Dumping Routines

FORTRAN "_[V,MAP-coded

Standard 7090/7094 Library (IBLIB) Routines

Purpose

These dump routines are used to obtain dumps of selected regions

of core storage with the option to continue or terminate execution

upon completion of the dumping.

Usag____e

The statements

CALL DUMP (A1, B1, F1, ..., AN, BN, FN)

CALL PDUMP (A1, B1, F1, ..., AN, BN, FN)

are used to enter the subroutines DUMP and PDUMP respectively.

The pairs A1-A2,...,AN-BN are variable names that represent upper

and lower (or lower and upper) bounds on the regions of core storage

to be dumped. The setting of F1,...,FN specifies the dump format

for the variables with_the given regions, e.g.,

F1,...,FN = 0 for octal dump

= 1 for floating point dump

2 for integer dump

= 3 for octal dump with mnemonics

If no arguments are specified in either of the above CALL statements,

then an octal dump of all of core storage is taken. If only F1,...,FN

are omitted, then the specified regions are dumped in octal.

Discussion

The two dump procedures are identical in every respect, except that

the job is terminated following the execution of the CALL DUMP()

statement, whereas computation continues following the execution of
the CALL PDUMP statement.

The quantities being dumped are printed out, 8 items per line. The

absolute location (in octal) of the first of the 8 is printed to

the left of the line.

J

B3

Identification

I_EXP, Exponential Function

7090/709_ FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute the value of the function

Y = Exp(X), where X and Y are slngle-precislon floating-point
numbers.

Usag_____ee

This subroutine is entered by use of an arithmetic statement

Y = EEP(X)

Error Condition

If this subroutine is entered with a value for X that is greater

than88.028, an error trace will be executed automatically,

following which the message

EXe(B), B a_ _ 88.O28 _ ALLOWED

is printed. Control is returned to the calling program. The

value returned for Y under the error condition is the input value
of X.

Accuracy

The absolute error is less than or equal to lO "8.

Timing

The average execution time for EXP(X) is 207 _s.

Method

X 2Xlog2eE p(x)= e =

= 21 +F

(since e = 21°g2e_

Method (continued)

where

I + F = X log2e

and

Thus

I = integral part

F = fractional part

ex = 21. 2F

where

2F = 1 +

and

2F

D+CF 2- F-_/(F2+A)

A = 87.417497202

B = 617.9722695

C = 0.03465735903

D = 9.9_59_7821

B3

R1

Identification

IBM OR, CMPL(COMPL), BOOL, AND, Boolean Functions

See wrlteup for FORTRAN IV Llbrary Subroutine IBM AND.

Identification

IBM PDMP(PDU_P), DUMP, Selective Dumping Routines

See writeup for FORTRAN IV Library Routine IBM DUMP.

N2

B1

Identification

_M SIN, COS, Sine and Cosine Functions

FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute the functions Y = Sin(X) and

Y = Cos(X), where X and Y are single-precision floating-point

numbers, and X is in radians.

Usage

This subroutine is entered by use of arithmetic statements, e.g.,

and

z = siN(x) for Sin(X),

Y = COS(X) for Cos(X)

Error Condition

If this subroutine is entered with an argument that is greater than

or equal to 2_7in absolute value, an error trace will be executed

automatically, following which the message

SIN OR COS ARG GRT TH 2-_@_27 NOT ALLOWED

is printed. Control is returned to the calling program following

this sequence of events. The value returned for SIN(X) or COS(X)

under this condition is zero.

Accuracy

The absolute error is less than or equal to l0 -8 .

Timing

Average computing times are 247 _s and 256 _s for SIN(X) and

COS(X) respectively.

B1

Method

A. Sin(X)

IflXl_='_, Sin(X)= (-1) n Sin(Z)

where

Z/_ = X/_- n

(a) If 0---= IZl_ 2-8, then

Sin(Z) = Z

izl= o.3,

Sin(Z)= Z(AI+2-2Z2 + BI/(Za+ CZ))

(C) Otherwise,, let m = _/2 - IZI ' and then
w

Sin(Z) = D 1 -Pm e - E- 3_3m a

A a + m a + B2

m a + Ca

B. Cos(X) = SIn(X + _/2)

The following constants are used in the above equations:

A 1 = -19.8459242619 A 2 = 82.5803019956

B I = 1042.92670814 B 2 = 2287.44319569

CI = 50.0302454854 Co = 24.1448946943

D I = 19.47714945237 E _-= 3276.33995164

Identifi cation

IBM SQRT, Square Root

FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute the square root of a single-

precision floating-point non-negative number.

Method

This subroutine is entered by use of the statement

Y : SQRT(X)

Error Condition

If this subroutine is entered with a negative value for X, an

error trace is executed, following which the message

SQRT(-B)NOT ALLOWED

is printed. Control is returned to the calling program. The

value returned is the square root of the absolute value of the

erroneous negative argument.

Accuracy

The absolute error is less than or equal to l0 -8.

Timing

The average computing time for SQRT(X) is 142_s.

B4

Method

Let X = 2_b.F where 0.25_ F _l.O.

Then

where

_= Pi (i is the numberof the approximation)

Now, the first approximation is

Pl= AF+B

where

A = 0.875, and B = 0.27863 for 0.25 _ F-= 0.5

and,

A = 0.578125 and B = 0.421875 for 0.5_ F_ i

Then two Newton iterations are carried out:

P2-- (PI + F/PI)/2

P3 -- (P2 + F/P2)/2

The final result is the iteration Po.
D

B2

Identification

IBM TANH, Hyperbolic Tangent Function

FORTRAN IV, MAP-coded

Standard 7090/7094 Library (IBLIB) Routine

Purpose

This subroutine is used to compute the function Y = Tanh(X),

where X and Y are single-preclslon floating-polnt numbers.

Usage

This subroutine is entered with the statement

Y = TA_(X)

Accurac7

The absolute error is less than or equal to 3 x l0 -8 for X in

the range .0034-.17, and less than lO -8 elsewhere.

Timing

The average computing time for TANH(X) is 303 _s.

Method

For positive X:

(a) Forl Xl _="12

tanh(X) : 1

(b) For 12 _'X __.17

ex . e-x
t_(X) =

ex + e-X

(c) .17 >x > .00034

No

e2X- 1

egX+l

I h

B2.

Method (continued)

tanh(X) = f(A + fa(B + C(D + f2)-l))-i

where

f = 4X log2e

and

A = 5.7707801636

B = 0.01732867951

C = 14.1384114018

D = 349.6699888

(d) For .00034--> X

tanh(X) = X

b. For negative X:

tanh(-X) =- tanh(+X)

Identification

o.

C2

ML HPRS, AL DPMU 3 Real or Complex Roots of a Polynomial with Real Coefficients
FORTRAN IV

Ames Modifications of SHARE Library Routine ML HFRS

Purpose

These routines are used to calculate real or complex roots of a pol_vnomial with

real coefficients. The subroutine ML HPRS uses single-precision arithmetic,

and AL DPMU uses double-precision arithmetic ran4 coefficients and roots are

double-precision numbers.

Us e

The subroutines are called by use of the statements

CALL MULLER(COE, N, ROOTR, ROOTI)

for the single-precision routine and

CALL DPMUL(COE, N, ROOTR, ROOTI)

For the double-precision routine, where

C0E is the mmme of the array where the coefficients of the polynomlal are

stored, ordered from the highest degree to the lowest degree

N is the degree of the polynomial

ROOTR is the name of the array where the real parts of complex roots are to

be stored

ROOTI is the name of the array where the imaginary parts of complex roots

are to be stored

The arrays COE, ROOTR, and ROOTI must be named in a DOUBLE PRECISION type

statement in the use of the double-precision subroutine DFMU.

All arithmetic in these routines is in the complex mode. Therefore, all

roots will have an imaginary part as well as a real part_ and the "imaginary

part" of a real root will be smaller by about seven decimal places than the

real part.

Accuracy

A nonmultiple root is generall_ accurate to from six to eight decimal places.

Multiple roots are computed less accurately, howeverj and when the multiplicity

is four the accuracy is only to about two decimal places.

Method

A method due to Muller [_AC (19_9) pp. 208-21_] is used in these routines.

